
THE DEVELOPMENT
OF A SCENARIO TRANSLATOR

FOR DISTRIBUTED SIMULATIONS

THESIS

Heon-Gyu Park, Captain
Republic of Korea, Army

AFIT/GCS/ENG/96D-22

to

to BUfctie X«1»OM|

I £:?*

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GCS/ENG/96D-22

THE DEVELOPMENT
OF A SCENARIO TRANSLATOR

FOR DISTRIBUTED SIMULATIONS

THESIS

Heon-Gyu Park, Captain
Republic of Korea, Army

AFIT/GCS/ENG/96D-22

rf3fie QTFALTTY M^BüTSB i

Approved for public release; distribution unlimited

19970409 041

AFIT/GCS/ENG/96D-22

The Development of a Scenario Translator

for Distributed Simulations

THESIS

Presented to the Faculty of the Graduate School of Engineering
of the Air Force Institute of Technology

Air University
In Partial Fulfillment of the

Requirements for the Degree of
Master of Science in Computer Systems

Heon-Gyu Park, B.S.
Captain, Republic of Korea, Army

December 1996

Approved for public release; distribution unlimited

Preface

I can do all things through Christ, which strengthened me. Pilippians 4:13

I would like to thank everyone who helped me to finish this thesis effort. My first

gratitude goes to my advisor, Maj. Keith Shomper. His patience, enthusiasm, and

understanding of my situation guided me through this thesis. He showed me the way

every time I encountered problems. My thesis committee, Lt. Col. Martin Stytz and Dr.

Hartrum, provided me their positive energy and constant faith in my abilities. Their

fairness and encouragement kept me going through the program.

I owe a sincere thanks to the ModSAF, EADSIM, and BATTLESEV1 developers

those who met with me via the network or telephone. They gave me correct answers

whenever I asked about the simulation. I wish to thank the many people at ModSAF

reflector and Teledyne Brown User Support Group who quenched my thirst for

knowledge.

I'm also indebted to a number of people who graciously extended their patience

and friendship during the time I was writing this thesis. My hearty thanks goes to Doug

Blake who devoted his time and effort to reviewing this thesis.

I also appreciate the cheering and encouragement of the Korean Officers who

showed their interest and concern for my effort, and I want to express gratitude to the

Christians of my church who offered a lot of prayers for me.

I dedicate this thesis to my family in gratitude for their eternal support, faith and

love. I don't know how to thank my wife, Hae-Suk, who endure patiently everything until

I graduated and my son Ji-Won who missed lots of fun with me. Finally, I send all my

honor round to God who guided me, and also will guide me through my life before I face

him.

Heon-Gyu Park

Table of Contents

Page
Preface ii

Table of Contents iii

List of Figures vi

List of Tables viii

List of Abbreviations xii

Abstract xiv

I. Introduction 1-1

1.1 Background 1 -i
1.2 Problem Statement 1 .3
1.3 Assumption 1-3
1.4 Approach 1-4

1.4.1 Determining Conversion Method 1-4
1.4.2 Mapping to Transitional Prototype 1-6
1.4.3 Remapping to Target Scenario 1-7

1.5 Thesis Overview 1-7

II. Background and Literature Review 2- 1

2.1 Introduction 2 -1
2.2 Historical Background 2 -1
2.3 Military Simulation Technology 2-2

2.3.1 Distributed Interactive Simulation (DIS) 2-2
2.3.1.1 Concept 2-2
2.3.1.2 DIS Objectives 2-3
2.3.1.3 DISPDUs 2-3

2.3.2 Advance Distributed Simulation 2-4
2.3.3 Computer Generated Forces 2-7

2.4 Distributed Simulations 2-8
2.4.1 Modular Semi-Automated Forces (ModSAF) 2 - 8

2.4.1.1 ModSAF Architecture 2-8
2.4.1.2 Scenario File Organization 2-10

2.4.2 Extended Air Defense Simulation (EADSIM) 2- 11
2.4.2.1 EADSIM Architecture 2-12
2.4.2.2 Scenario File Organization 2-13

2.4.3 Battlefield Simulation (BATTLESIM) 2 -14
2.4.3.1 BATTLESIM Architecture 2-15
2.4.3.2 Scenario File Organization 2-16

2.5 Summary 2-17

III. System Requirements and Design 3 . 1

3.1 Introduction 3. \
3.2 Definitions 3. 1

111

3.3 Requirements 3-2
3.3.1 Defining a Transitional Prototype 3-2

3.3.1.1 Insufficiency of DIS PDU 3-2
3.3.1.2 Defining a New Prototype 3-3

3.3.2 Loading a source scenario 3-4
3.3.3 Mapping to a Transitional Prototype 3-5
3.3.4 Remapping to a Transitional Target Scenario Prototype 3-6
3.3.5 Saving the Transitional Target Scenario Prototype 3-8

3.4 Design 3-8
3.4.1 Hardware Specification 3-8
3.4.2 Software Specification 3-9

3.4.2.1 General Organization 3-9
3.4.2.2 User Interface 3-9
3.4.2.3 Object Diagram 3-10

3.4.3 Transitional Prototype Requirements 3-11
3.4.3.1 Ideal Prototype 3-11
3.4.3.2 Proposed Prototype 3-11

3.4.4 Transitional Scenario Prototype Specification 3-13
3.4.4.1 ModSAF 3-13
3.4.4.2 EADSIM 3-13
3.4.4.3 BATTLESIM 3-15
3.4.4.4 Transitional Prototype 3-16

3.4.5 Translation Tables 3-18
3.5 Summary 3-19

rv. System Implementation 4- i

4.1 Introduction 4. \
4.2 Loading a Scenario File 4. 1
4.3 Mapping a Scenario Prototype to a Transitional Prototype (TP) 4-6
4.4 Remapping a TP to a Transitional Target Scenario Prototype 4-10
4.5 Saving a TP as a Target Scenario 4-16
4.6 User Interface 4-17

4.6.1 Graphics User Interface 4-17
4.6.2 Command Line Interface 4-19

4.7 Summary 4-19

V. Results 5.1

5.1 Introduction 5-1
5.2 The Scenario File Translator Test Cases 5-1

5.2.1 Test 1 : ModSAF to EADSIM 5-1
5.2.2 Test 2: ModSAF to BATTLESIM 5-1
5.2.3 Test 3: ModSAF to ModSAF 5-2
5.2.4 Test 4: EADSIM to ModSAF 5-2
5.2.5 Test 5 : EADSIM to BATTLESIM 5 - 2
5.2.6 Test 6: EADSIM to EADSIM 5-3
5.2.7 Test 7 : BATTLESIM to ModSAF 5 - 3
5.2.8 Test 8: BATTLESIM to EADSIM 5-3
5.2.9 Test 9 : BATTLESIM to BATTLESIM 5-3

5.3 Observation 5.4
5.4 Summary 5.4

IV

VI. Thesis Summary 6- 1

6.1 Introduction 6- 1
6.2 Recommendations for Future Work 6-1

6.2.1 Transitional Prototype 6-2
6.2.2 DIS PDU 6 - 2
6.2.3 Machine Independent 6-3
6.2.4 Compatibility 6-4
6.2.5 Memory Size 6-4

6.3 Conclusion 6-4

Appendix A. Transitional Scenario File Prototype A- 1
A.1 ModSAF A-1
A.2 EADSIM A-1

A.2.1 EADSIM Scenario File A-l
A.2.2 EADSIM Laydown File A-11

A.3 BATTLESIM A - 21
A.4 Transitional File A - 25

Appendix B. Enumeration Type for Task Type of Transitional Prototype B -1
B.l TaskName B -1
B.2 Data Structures for Each Task Type B-2
B.3 Enumeration Type for Variables in Task B -12

Appendix C. Command Line Interface for SFT C-l

Bibliography Bib- 1

Vita Vita-1

List of Figures

Figure page

1.1 Direct Simulation Conversion 1 -4

1.2 Conversion from Simulation to Intermediate Prototype 1-5

2.1 ModSAF Simulated Battlefield 2 - 9

2.2 SAFstation and SAFsim Components of ModSAF 2-10

2.3 EADSIM Scenario Playback 2-12

2.4 EADSIM Model Processes and Applications 2-13

2.5 EADSIM Scenario Composition 2-14

2.6 BATTLESIM, TCHSIM, and SPECTRUM 2-16

3.1 Conversion using an Intermediate Format 3-5

3.2 Mapped and Unmapped Area into Intermediate Format 3-6

3.3 Common Area Between Intermediate Format and Target Scenario 3-7

3.4 Unrepresented Area In a Target Scenario 3-8

3.5 Translator General Diagram 3.9

3.6 Scenario Translator Object Diagram 3-11

3.7 Relationship between Simulations and Suggested Prototype 3-12

3.8 Transitional ModSAF Scenario Prototype 3-13

3.9 Transitional EADSIM'Scenario File'Prototype 3-14

3.10 Transitional EADSIM 'Laydown File' Prototype 3-14

3.11 Transitional EADSIM Platform Prototype 3-15

3.12 Transitional BATTLESIM Prototype 3-16

3.13 Transitional Prototype mapping for ModSAF scenario 3-20

3.14 Transitional Prototype mapping for EADSIM scenario 3-21

3.15 Transitional Prototype mapping for BATTLESIM scenario 3-22

4.1 Algorithm for Reading a BATTLESIM Scenario file 4-4

4.2 Geocentric Cartesian Coordinates in DIS 4.7

4.3 Remapping to a Transitional ModSAF Prototype 4-13

4.4 Remapping to a Transitional EADSIM Prototype 4 -14

4.5 Remapping to a Transitional BATTLESIM Prototype 4-15

4.6 The Main Window of the SFT 4 .18

5.1 A Source Scenario of ModSAF 5.5

VI

5.2 A Converted EADSIM Scenario from ModSAF 5-5

5.3 A Converted ModSAF Scenario from ModSAF 5 - 6

5.4 A Source Scenario of EADSIM 5-6

5.5 A Converted ModSAF Scenario from EADSIM 5-7

5.6 A Converted EADSIM Scenario from EADSIM 5-7

5.7 A Converted ModSAF Scenario from BATTLESIM 5-8

5.8 A Converted EADSIM Scenario from BATTLESIM 5 - 8

vn

List of Tables

Table Page

2.1. Entity State Protocol Data Unit 2 - 5

2.2. Data Structure ofModSAF Scenario File 2-11

2.3. BATTLESIM Input File 2-17

3.1. Matching Comparison between Simulation Scenario and DIS 3-3

3.2. Data Structure of Transitional File 3-17

3.3. Percentages for Common Variables between Two Scenario 3-19

4.1 Required Memory Size for Loading a ModSAF Scenario File 4-3

4.2 Required Memory Size for Loading an EADSIM Scenario File 4-4

4.3 Required Memory Size for Loading a BATTLESIM Scenario File 4-5

4.4 Required Memory Size for Loading Transitional File 4-5

4.5 Icon Name in BATTLESIM vs. Entity Name in DIS 4-9

6.1 Proposed Future Work 6-3

A.l ModSAF Transitional Prototype A- 1

A.2 EADSIM'Scenario File'Transitional Prototype A-l

A.3 EADSIM 'es_filename' data structure A-2

A.4 EADSIM 'esjieader' data structure A - 2

A.5 EADSIM'esjaydownfile'data structure A-2

A.6 EADSIM 'eselementmap' data structure A-2

A.7 EADSIM 'esjietworkfile' data structure A-2

A.8 EADSIM'es_zerothrumaxhost'data structure A-3

A.9 EADSIM'es_unusedstring'data structure A-3

A.10 EADSIM 'es_debug' data structure A - 3

A.l 1 EADSIM 'esjiost' data structure A - 4

A. 12 EADSIM'es_maxfilec3ioutput'data structure A-4

A.13 EADSIM 'esjruth' data structure A - 4

A.14 EADSIM 'es_spds' data structure A-4

A.15 EADSIM'esjog'data structure A-5

A.16 EADSIM 'esstat' data structure A-5

A.17 EADSIM'es_pstat'data structure A-5

A.18 EADSIM 'es_file' data structure A - 6

vni

A.19 EADSIM 'es_earthradadj' data structure A-6

A.20 EADSIM 'esjizululocal' data structure A-6

A.21 EADSIM 'esdisplaythruroute' data structure A-7

A.22 EADSIM'es_formatthrustarting'data structure A-7

A.23 EADSIM'es_process'data structure A-7

A.24 EADSIM'es_write'data structure A-8

A.25 EADSIM 'es_c3ilog' data structure A - 8

A.26 EADSIM 'esjmage' data structure A-9

A.27 EADSIM'esjransradfilepath'data structure A-9

A.28 EADSIM'es_defaultsentime'data structure A-9

A.29 EADSIM'es_defaultjamtime'data structure A-9

A.30 EADSIM 'es_totalruns' data structure A-10

A.31 EADSIM 'es_time' data structure A -10

A.32 EADSIM 'esexternal' data structure A-10

A.33 EADSIM 'es_tb data structure A-11

A.34 EADSIM 'es_lay' data structure A-11

A.35 EADSIM'esjayplatform'data structure A-12

A.36 EADSIM'esjaysensor'data structure A- 13

A.37 EADSIM 'esjaysensorheader' data structure A -13

A.38 EADSIM'esjaycomdev'data structure A-14

A.39 EADSIM'es_layjammer'data structure A-14

A.40 EADSIM 'esjayjammerheader' data structure A - 14

A.41 EADSIM'esjayasset'data structure A- 15

A.42 EADSIM'esjaytarget'data structure A-16

A.43 EADSIM 'eslayiftuplatform' data structure A-16

A.44 EADSIM 'eslayplatformsatellite' data structure A-16

A.45 EADSIM'esjayuseroutedata'data structure A-17

A.46 EADSIM 'eslaynotuseroutedata' data structure A-17

A.47 EADSIM'esjayptl'data structure A-17

A.48 EADSIM 'esjayacfrc' data structure A - 17

A.49 EADSIM'esjaywaypoint'data structure A-18

A.50 EADSIM 'esjayart' data structure A -18

IX

A.51 EADSIM'esjayplatformaircraft'data structure A-18

A.52 EADSIM'esjayplatformairbase'data structure A-19

A.53 EADSIM'esjaymilid'data structure A-19

A.54 EADSIM'es Jaytime'data structure A-19

A.55 EADSIM'esjaypointing'data structure A-20

A.56 EADSIM 'esjaynurdwaypoint' data structure A-20

A.57 EADSIM'esjayaircraftdata'data structure A-20

A.58 BATTLESIM'bs_scenario'data structure A-21

A.59 BATTLESIM'BS_TerrainMinCoord'data structure A-21

A.60 BATTLESIM'BS_TerrainMaxCoord'data structure A-21

A.61 BATTLESIM'bs_sector'data structure A-21

A.62 BATTLESIM 'bs_icon' data structure A-22

A.63 BATTLESIM'BS_Header'data structure A-22

A.64 BATTLESIM'bs_object'data structure A-22

A.65 BATTLESIM'BS_ObjectLocation'data structure A-22

A.66 BATTLESIM 'BS_ObjectVelocity' data structure A-23

A.67 BATTLESIM 'BS_ObjectOrientation' data structure A-23

A.68 BATTLESIM 'BS_DescObj' data structure A-23

A.69 BATTLESIM'bs_routepoint'data structure A-24

A. 70 BATTLESIM 'bs_sensor' data structure A-24

A.71 BATTLESIM'bsarmamenf data structure A-24

A.72 BATTLESIM 'bsjarget' data structure A-24

A.73 BATTLESIM'bsdefensive'data structure A-25

A.74 Transitional File 'tf_transfile' data structure A-25

A.75 Transitional File'tf_database'data structure A-25

A.76 Transitional File 'tf_point' data structure A - 26

A.77 Transitional File 'tfjocation' data structure A - 26

A.78 Transitional File 'tfentityheader' data structure A-26

A.79 Transitional File 'tfentitytype' data structure A-26

A.80 Transitional File 'tfentityvelocity' data structure A-26

A.81 Transitional File'tf_entityorientation'data structure A-27

A.82 Transitional File 'tfmunitiontype' data structure A - 27

A.83 Transitional File 'tf_sensorid' data structure A-21

A.84 Transitional File 'tfjammerid' data structure A-27

A.85 Transitional File'tftasktype'data structure A-27

B.l Enumeration Type of Task Name B-l

B.2 Task 'Move' data structure B - 2

B.3 Task'Follow Simulator'data structure B-3

B.4 Task'Hasty Occupy Position'data structure B-3

B.5 Task 'Assault' data structure B - 4

B.6 Task'Traveling Overwatch'data structure B-4

B.7 Task'Overwatch Movement'data structure B-4

B.8 Task 'Withdraw' data structure B - 5

B.9 Task 'Breach' data structure B - 5

B.10 Task 'Concealment' data structure B -6

B.ll Task 'Delay' data structure B -6

B.12 Task 'Repair' data structure B - 6

B.13 Task'Service Station'data structure B-6

B.14 Task'Cross Leveling'data structure B-7

B.15 Task'Change Formation'data structure B-7

B.16 Task 'Rendezvous' data structure B-7

B.17 Task'FWA Sweep'data structure B-7

B.18 Task'FWA CAP'data structure B-8

B.19 Task'FWA CAS Mission'data structure B-8

B.20 Task'FWA Ingress'data structure B-9

B.21 Task'FWA Attack Ground Target'data structure B-9

B.22 Task'weaponsenabled'data structure B-9

B.23 Task'FWA Return to Base'data structure B-10

B.24 Task'FWA Interdiction'data structure B-10

B.25 Task'RWA Fly Route'data structure B-10

B.26 Task'RWA Hover'data structure B-11

B.27 Task'RWA Orbit'data structure B-11

B.28 Task'RWA Attack'data structure B - 11

B.29 Task'RWA Hasty Occupy Position'data structure B -11

XI

List of Abbreviations

ADS Advanced Distributed Simulation

AFIT Air Force Institute of Technology

ARPA Advanced Research Projects Agency

BATTLESIM Battlefield Simulation

C2 Command and Control

C3I Command , Control, Communications, and Intelligence

C4I Command , Control, Communications, Computers, and Intelligence

CAS Close Air Support

CCTT Close Combat Tactical Trainer

CGF Computer Generated Forces

CLI Command Line Interface

DARPA Defense Advanced Research Projects Agency (now ARPA)

DES Discrete Event Simulation

DIS Distributed Interactive Simulation

EADSIM Extended Air Defense Simulation

FWA Fixed Wing Aircraft

GUI Graphics User Interface

ID Identity

IEEE Institute of Electrical and Electonics Engineering

LP Logical Process

METT-T Mission, Enemy, Troops, Terrain and Time

ModSAF Modular Semi-Autonomous Forces

NEQ Next Event Queue

PASE Parallel Ada Simulation Environment

PDES Parallel Discrete Event Simulation

PDU Protocol Data Unit

PO Persistent Object

QUEUESIM Queuing Model Simulation

RWA Rotated Wing Aircraft

SAF Semi-Autonomous Forces

xii

SFT

SGI

SIMNET

SPECTRUM

STOW

STRICOM

TCHSIM

TP

USA

USSR

VHDL

VHSIC

VSIM

W&A

Scenario File Translator

Silicon Graphics Incorporation

Simulation Network

Simulation Protocol Evaluation Testbed using Reusable Models

Synthetic Theater of War

U.S. Army Simulation, Training and Instrumentation Comand

Thomas C Hartrum Simulation

Transitional Prototype

United States of America

Union of Soviet Socialist Republics

VHSIC Hardware Description Language

Very High Speed Integrated Circuit

VHDL Simulation

Verification, Validation & Accreditation

xm

Abstract

There exists a variety of simulation generation and analysis products which have

differing purposes and functions designed to simulate a real military battlefield. Due to the

particular purpose of each simulation, it is impractical to use one scenario of a simulation

directly with another simulation without a translator since there is no standard scenario

format. In the current environment, interoperability between simulations is becoming

more important in large scale simulations and distributed exercises. The Scenario File

Translator (SFT) provides an easy and accurate way to create a scenario from a

heterogeneous simulation. The SFT can load and save the three research simulations:

ModSAF, EADSIM, and BATTLESEVI. It also defines the general transitional prototype

(TP) which is the information most commonly used to create a mock battlefield computer

simulation. System functionality is accessible through a graphical user interface (GUI).

The four top-level steps to translate a scenario are loading a source scenario file, mapping

to the TP, remapping the TP to a transitional target prototype, and saving the prototype as

a target scenario file which a heterogeneous simulation use. Although this system was

designed for three simulations, it can be applied to any other simulations by creating only

two additional functions: one which maps the new scenario to the TP and another which

remaps the TP into the transitional scenario protocol.

XIV

THE DEVELOPMENT

OF A SCENARIO TRANSLATOR

FOR DISTRIBUTED SIMULATIONS

I. Introduction

1.1 Background

Most people want maximum results with minimum investment in cost and time when doing a

work. Attempts to attain such results will continue and computer simulation is a good way to

accomplish it. Computer simulation is very useful when the real system does not exist or it is

expensive, time consuming, dangerous, or impossible to build [Neel87]. The effectiveness of

computer simulation in the military is especially apparent, since real combat conditions are

often costly to recreate and often dangerous. When we use computer simulation, we do not

have to fly many aircraft nor send hundreds of tanks to attack a target, furthermore we do not

have to maneuver thousands of soldiers to other places for training. Computer simulation also

allows testing of many scenarios in a short time so that we can measure which scenario is the

best model at a certain place.

To simulate a real battlefield, some preconditions should be solved, such as an

accurate terrain database, a precise description of strategy, and a stable network. High speed

computer networks and distributed simulation applications make possible computer

simulations for the military. Even though the opposing forces may be located far away, the

high speed communication network provides real time simulation as if each side is close at

hand. Thus the exerciser can develop fighting skills through mutual exercises. However, the

important thing here is that a standard communication protocol is necessary to implement the

1-1

distributed communication. For example, assume exercise A uses protocol X and exercise B

uses protocol Y: how can exercise A know exercise B fires a missile, or is fired upon?

Developing a well-defined standard protocol is as important as good simulation software. As

a result, the Defense Advanced Research Projects Agency (DARPA, now called ARPA) made

a standard communication protocol, which was named the Simulation Network (SIMNET).

Between 1983 and 1989, ARPA successfully demonstrated the core technology for networking

large numbers of manned, homogeneous simulators using SIMNET. Distributed Interactive

Simulation (DIS) standards are being developed to provide industry wide standards that

enable linking of heterogeneous systems. Since 1992, the DIS standards have been

demonstrated numerous times. The demonstrated scenarios displayed maritime, air-to-air,

ground-to-air, air-to-ground, and land operations. These demonstrations proved the viability

of linking simulations of different types, based on different technologies, and built by different

organizations [DIS 94].

The past few years have seen remarkable advances in DIS. The DIS environment

allows military units from around the country to participate in mock training exercises

without a large commitment of resources [Adam93]. As mentioned earlier, there now exists a

variety of scenario generation and analysis products such as Integrated Eagle, Janus, CCTT

(Close Combat Tactical Trainer), Modular Semi-Autonomous Forces (ModSAF), and

Synthetic Theater of War (STOW). Each simulation has its differing purposes and functions.

So after testing a scenario with different simulations, we can build better combat models and

get more precise verification.

However, a basic problem still exists. Due to the particular purpose of each

simulation, we cannot use one scenario of a simulation directly with another simulation

without a translator since there is no standard scenario format. To test a new scenario, it is

1-2

impractical to manually recreate it to make it fit another simulation. In the current

environment, interoperability between simulations is becoming more important in large scale

simulations and distributed exercises. Since current scenarios can contain thousands of

entities, scenario setup and initialization can be quite laborious.

1.2 Problem Statement

There exist several ways to apply a battle scenario of one simulation to other simulation. The

most straight forward way is to recreate the scenario file in a format suitable for the other

simulation, but this is time consuming work and an ineffective. If we want to apply a

scenario to five different simulations, we need to make five versions of the same scenario for

each simulation. If we want to test 10 scenarios for these same five simulations, then 50

completely different scenarios are needed. There could be ten thousand entities in a scenario,

so it is not easy work to make a complete scenario. Making manual conversion of such

scenarios is inefficient. Another solution for these problems is a translation tool to

automatically convert scenarios from one simulation format to another. I propose to produce

a software tool that aids in the translation of scenario file formats so that scenarios developed

by different simulations can be run by each other. A well-defined translator will save time

and money, and it will provide the best way to test a scenario with different simulations.

1.3 Assumption

Most simulations have a specific purpose architecture. As the goal of each simulation is

different from others, the way to read or write a scenario file may also be different. For

example, the amount of munitions for a unit may be represented in one simulation, but not

another. So, translating one scenario format into a different format is not guaranteed to

1-3

preserve all information. That means some data which is not present in a target simulation

can be lost while converting to another scenario. The important thing here is the conversion

rate which shows how many entities are translated to the other simulation.

1.4 Approach

This section discusses some key decisions I used to accomplish this work. First of all, I had

to choose a conversion method to translate one scenario to another. Based on this decision, I

designed an intermediate format covering one scenario of each simulation. Then in the

remainder of the section, I delineated detailed processes.

1.4.1 Determining Conversion Method A problem with writing a generalized scenario

translator is that the data structures used to initialize scenarios in different tools are very

specialized. One way to solve this problem is to develop a tool which can map directly

between any two simulations. This increases the conversion rate. This concept is depicted in

Figure 1.1.

Figure 1.1 Direct Simulation Conversion

1-4

This concept is efficient when the number of simulations is small. However,

whenever a new simulation is developed, it is necessary to write a new conversion routine.

This routine translates the new scenario of the new simulation to each existing simulation: I

also needed to create a routine that converts a scenario of an existing simulation to the new

simulation. Assume there are currently N simulations. When a new simulation is developed,

N routines are needed to map a scenario of the new simulator into the existing simulation, and

another N routines are necessary to map the scenario of the existing simulations to the one of

the new simulations. Thus a total of2*N routines are needed.

Another way to do this is to do remap to a target simulation after mapping into an

intermediate prototype. This is more efficient because it is not dependent on the number of

existing simulations. This requires two routines: a routine that maps to the intermediate

prototype, and a routine that remaps to the target scenario of the simulation. Thus only two

routines are always needed, compared to the 2*N routines required using the previous method.

Figure 1.2 shows this concept.

Figure 1.2 Conversion from Simulation to Intermediate Prototype

1-5

I propose that this translation be done in two steps. The first step is mapping a

source scenario to an intermediate transitional prototype. The second step is saving the

intermediate prototype to the target scenario format used to run target simulations.

1.4.2 Mapping to Transitional Prototype In order to develop a reasonable mapping, I first

began with a comprehensive survey of the three target research simulations: ModSAF,

EADSIM, and BATTLESIM. Furthermore, I had organized the survey as the following set of

tasks.

• Review of Semi-Automated Forces (SAF)

First, I reviewed the history of SAF technology and current research efforts in the

field. That review gave me a basic knowledge of the simulations.

• Survey of current simulations

Next, I investigated each simulation's basic architecture and scenario's formation. It

was beneficial for me to understand what things were common and what points were

unique.

• Finding the Transitional Format

Finding the transitional format was the most important part of this research. By

choosing a well-designed transitional format, I could make a more generic program.

The way to find an intermediate transitional prototype that suits this concept is either

to select a protocol among these currently developed or to define a new protocol

fitting the above concept. A more detailed discussion of this topic appears in Section

3.3.1.

• Build the Comprehensive Table

Following these steps, I composed a table suitable to compare each simulation. This

table gave me the insight into what data are in common and which data structure is

more efficient to translate a scenario.

1-6

1.4.3 Remapping to Target Scenario

The remapping step to a target scenario using the comparison table was the index of

performance for this research effort. As I mentioned in Section 1.3, it was unrealistic to

expect 100 % conversion; however, a "close" scenario was likely, and it was the goal of this

research to determine how "close" a conversion the transitional prototype could support. This

goal was implemented through the next two steps.

• Find the common data between target scenario and the transitional prototype.

• Save as a new scenario file which can be read by a target simulation.

/. 5 Thesis Overview

This thesis is divided into six chapters. Chapter Two presents the background material on

Advance Distributed Simulation, and DIS and Computer Generated Forces (CGF) or SAFs.

Chapter Three focuses on the requirements definition and analysis process and its translation

into a system design. Chapter Four discusses implementation of the system and describes

how it works. Chapter Five summarizes the results and illustrates several test cases. Finally,

Chapter Six provides recommendations for future work and the conclusion.

1-7

//. Background and Literature Review

2.1 Introduction

This chapter summarizes the work in the two major research areas that is relevant to my

thesis effort. Since the primary purpose of this thesis was to create a scenario translation

tool, I completed a survey of the enabling and supporting technology in that field. The first

section provides a historical background how DIS was evolved, and the next section lays the

foundation for understanding the important concepts in military simulation. Finally, the last

section discusses three of the simulations recently developed - ModSAF, EADSIM and

BATTLESIM - and focuses on how each simulation works and what are the differences

among them.

2.2 Historical Background

To date, various research efforts have focused on developing war game simulations which

have a particular ability for the given research. New simulations with new abilities are

created one after another, and existing simulations are upgraded to be more accurate and

realistic. The one point that all simulations have in common is standardization through the

network for sharing data. This standardization has been accomplished using DIS.

DIS had been started in 1989 when ARPA initiated a program to enhance the

Simulation Network (SIMNET) program. SIMNET was developed for building a cross-

country network of interactive combat simulators [Pope91]. Its demonstration of

approximately 250 simulators successfully showed the possibilities of distributed simulation.

SIMNET technology is still used today to train U.S. Army tank teams around the country.

DIS is a set of protocols that carry messages about entities and events through a

network. When a network provides reasonably low latency (100 to 300 milliseconds) and low

2-1

latency variance, the characteristics of the network present few problems to building a virtual

world that is separated by thousands of miles in the real world [DIS94]. One important

aspect of DIS development is the effort to recognize DIS as an international standard for

distributed simulation. Thus, the DIS standard was submitted and approved by the Institute

of Electrical and Electronic Engineers (IEEE) as IEEE standard 1278. Following IEEE

approval, the standard was submitted to the appropriate international agencies for

international standard approval. This is useful, since it promotes cooperation among the U.S.

and its allies in the field of simulation [McDo91].

2.3 Military Simulation Technology

2.3.1 Distributed Interactive Simulation (DIS)

2.3.1.1 Concept DIS is an interconnected, time-coherent simulation system which creates a

distributed, interactive environment using the IEEE 1278 protocol [Siko95]. DIS simulators

exchange information in formatted messages called Protocol Data Units (PDUs). These PDUs

provide data for the management and control of a DIS exercise and provide data concerning

simulated entity states and the types of entity interactions that take place in a DIS exercise. It is

possible for geographically separated simulators to interact with each other via network

communications by the DIS standard [IST94]. DIS is designed for linking the interactive, free play

activities of people in operational exercises to represent a time and space coherent synthetic world

environment. This environment is created through real-time exchange of data units between

distributed, computationally autonomous simulation applications in the form of simulation,

simulators, and instrumented equipment interconnected through standard computer communicative

services. The meaning of "distributed" is that no single computer controls the simulations.

Rather, each local computer is responsible for sending local copies of common terrain and models

2-2

(e.g., tanks, fighters, and naval vessels), and remote entities based on incoming PDU messages.

Local applications are required to send entity updated entity states when dead-reckoning thresholds

are exceeded or five seconds have elapsed [Gard93, Shea92]. Entities' positions and orientations

are predictable by using the Dead Reckoning algorithm so that the number of transmitted PDUs

can be kept as low as possible. This increases the scale of the exercise and reduces network

communications traffic from a single simulator [Gard93]. Dead Reckoning is an important

algorithm as one of the basic concepts underlying the DIS architecture. It also oliminishes the

computational processing associated with receipt of each new PDU because fewer PDUs are

received [Harv91].

2.3.1.2 DIS Objectives Principles of the emerging DIS standards and their applications are

introduced in this section. Basic architectural concepts include [IST94]:

• No central computer controls the entire simulation exercise,

• Autonomous simulation applications are responsible for maintaining the state of one or

more simulation entities,

• A standard protocol is used for communicating "ground truth" data,

• Changes in the state of an entity are communicated by simulation applications,

• Perception of events or other entities is determined by the receiving application, and

• Dead reckoning algorithms are used to reduce communications processing.

A definition of each of these concepts is provided in the proposed IEEE draft in reference

[IST93].

2.3.1.3 DIS PDUs DIS currently defines 27 different PDUs. A complete description of each of

these PDUs can be found in reference [IST94] and can be grouped into the following general

categories:

• Entity Information/Interaction,

2-3

• Warfare,

• Logistics,

• Simulation Management,

• Distributed Emission Regeneration, and

• Radio Communications.

Only 12 of these 27 PDUs have a fixed length. Each of the remaining PDUs has a

variable length dependent upon many factors including numbers of articulated parts, numbers and

types of emitters, length of audio transmissions, and amount of data.

Table 2.1 [IST94] depicts the entity state PDU as an example of the content and format of

the DIS PDUs.

2.3.2 Advanced Distributed Simulation (ADS) Computer simulation has been used by

military analysts in various aspects since the 1950s, especially in mock battle areas. At the

beginning, it had very limited scope due to the vastness of the battle and the complexity of the

simulated war, which also made it difficult to use and to satisfy the users. The development

of larger mainframe computers in the 1960s resulted in enlarged storage capacity and greater

processing speed allowing better digitized terrain and larger scenarios than before. By the

1980s, the capabilities of computer-based simulations had really expanded with the advent of

microprocessor chips, high speed data communication links, larger mass storage devices, and

flexible, detailed displays, all at low cost. Today, the simulated battlefield can depict more

accurately real-time war games because of continually improving computer capabilities. As

the SIMNET and DIS demonstration showed, it is possible to have different simulated

battlefields at dispersed geographic locations working together. The new capabilities, such as

high-speed communication networks, common network interface/translation devices, and

emerging standard data protocols, have allowed a time-coherent, interactive synthetic

2-4

Table 2.1. Entity State Protocol Data Unit

Word Field ByteO Bytel Byte 2 Byte 3
0
1
2

PDU Header Version ExerlD PDU Type Family
Time Stamp

Length Pad
3
4

Entity/Force ID Site Application
Entity Force ID # Artie Parts

5
6

Type Kind Domain Country
Category Subcategory Specific Extra

7
8

Alt Type Kind Domain Country
Category Subcategory Specific Extra

9-10
11-12
13-14

Linear Velocity X Component
Y Component
Z Component

15
16
17

Location X Component
Y Component
Z Component

18
19
20

Orientation Psi
Theta
Phi

21 Appearance Appearance
22

23-24
25
26
27
28
29
30

Dead Reckon Parms Algorithm Unused
Unused

Linear Accel X Component
Linear Accel Y Component
Linear Accel Z Component

Angular Velocity X Component
Angular Velocity Y Component
Angular Velocity Z Component

31
32-33

Entity Marking Char Set Marking
(Marking continued)

34 Capabilities Boolean fields
35
36

37-38

Artie Parms

Designator Change ID
Parameter Type
Parameter Value

environment where computer simulation, real equipment and systems, and humans work

together in synthetic battlefields for training, system development, testing, and force

assessment. This synthetic environment through geographically distributed and using

potentially dissimilar simulation hardware and software is a technology area named

Advanced Distributed Simulation (ADS) [Siko95].

2-5

There are many goals in ADS. The main goal is to create a synthetic world distributed

over a global network, which is realistically populated with: high resolution, dynamic terrain;

tactically significant environmental effects; individual combatants and weapon platforms

[Garr95]. Three simulation types including these main components are discussed below. The

first one is 'live simulation' in which real people operate real systems in actual operational

conditions. For example, an operational test of the F-22 in an electronic combat environment

in Nevada is an example of a live simulation. The second one is 'virtual simulation' in which

real people operate simulated systems. An example is a testbed such as Advance Research

Project Agency's (ARPA) Simulation Network (SIMNET). However, the most important and

capable examples of this type are represented by Distributed Interactive Simulation (DIS)

systems. Finally, those simulations in which simulated people operate simulated systems are

called 'constructive simulations'. Computer generated forces such as Modular Semi-

Automated Forces (ModSAF) are good examples of this type of simulation.

One of the important functions of ADS is to 'talk to and understand' what other

connected simulations are doing and what their simulated elements are doing. If the

simulations which compose a specific ADS configuration are all of the same type, scope, and

data structure, the communications interface between them is relatively straight-forward.

However, most simulations in an ADS have different scopes and data structures. So a

common language (or protocol) is necessary to enable communication with all connected

simulations. The most widely recognized and most comprehensive effort to define an ADS

standard simulation protocol is the DIS protocol. Development of this protocol occurs as a

cooperative effort by government and industry through Forms called the Distributed

Interactive Simulation Workshops [Siko95].

2-6

2.3.3 Computer Generated Forces (CGF) When the Army Modeling and Simulation

Master Plan was published in 1994, it named 20 areas for consideration in the Army modeling

and simulation community. The Master Plan defined the implementing software standards

across the modeling community and encouraged standards for development through the

establishment of "teaming arrangements" and "consensus building" within the Army modeling

community. CGF is the one of those areas. CGF Systems originated in the SIMNET

environment in the mid 1980s. Their initial use was to provide a set of threat vehicles and

live friendly forces to train personnel in the SIMNET simulators. Since 1990, CGF systems

have been used in other ways, providing both friendly and threat forces in virtual

experimentation environment. These CGF-based virtual battles have been interfaced with

sensor simulators (J-STARS) and live personnel in the command and control (C2) network

making decisions on interdiction of deep targets. The following list is a minimal set of

objectives for any CGF system as a "standard" [Pick95]:

• The CGF system must be useful to all three applications: training, advanced technology
demonstration, and analysis. This objective implies specific requirements such as:
- Ability for man-in-loop simulators to interface at any echelon.
- Ability to interface with live systems at any echelon
- Ability to run real-time and, for analytic applications, faster than real-time.
- Ability to interface with constructive models in the constructive+virtual environment.

• The CGF system must be DIS compatible and also have the ability to operate across both
local and wide area nets.

• The CGF system must represent the battle from Corps to individual vehicle.

• The CGF system must interface with other Service models in a Joint exercise.

• The number of operators in the CGF system must be minimal.

• The structures and data bases simulating the physical and cognitive/tactical behaviors of
the vehicles, personnel and units must be modular and easily isolated for Verification,
Validation & Accreditation (W&A).

For the architectural development of any CGF system, the design of certain

components are needed, which provide the simulation with the ability to represent the physical

2-7

environment in which the battle will take place, to represent the combatants themselves and to

represent a C2 structure for organizing the individual combatants into units and as a single

fighting force. The CGF system also demands the development of services supporting a

distributed simulation. The goals for depicting a CGF simulated environment are to represent

the individual vehicular commander to perform METT-T (Mission, Enemy, Troops, Terrain

and Time) activities, to represent the effects of weather, dynamic changes in terrain, and

battlefield haze and smoke.

2.4 Distributed Simulations

This section gives a brief synopsis of some SAF simulations that have been recently

developed such as ModSAF, EADSIM and BATTLESIM.

2.4.1 Modular Semi-Automated Forces (ModSAF)

ModSAF is the successor to the SIMNET and ODIN Semi-Automated Forces systems.

ModSAF 1.0 was released in December 1993 following the development of the ModSAF

architecture in the spring of 1992 under sponsorship by ARPA/ASTRO and STRICOM

[Cour95]. ModSAF is a combat simulation that supports DIS. It lets us create and control

combat entities on a simulated battlefield. These entities replicate the outward behavior of

their component vehicle and weapon systems to a level of realism sufficient for training and

combat development [ADST95]. Figure 2.1 shows an actual ModSAF simulated battlefield.

2.4.1.1 ModSAF Architecture There are three components in the ModSAF architecture:

(1) SAFstation, (2) SAFsim, and (3) Logger. These components are typically run on

separate computers over a network; however, the SAFsim and SAFstation can run on

2-8

Figure 2.1. ModSAF simulated battlefield

the same computer. The components communicate physical battlefield state and events

among themselves through the simulation (DIS) protocol and command, control, and system

information through the Persistent Object (PO) protocol [ADST95].

Figure 2.2 shows the SAFstation and SAFsim components communicating over a

network via PO and simulation packets that are marked with the same exercise ID [ADST95].

SAFsim and SAFstation communicate command, control, and system information via PO

packets for bundling graphic, unit, model parameter, task, task frame, and exercise data.

When we create objects on the SAFstation, PO packets which are representing the state of

each object are projected onto the network so that the objects they represent can be simulated

by the SAFsim. SAFsim and SAFstation communicate physical battlefield state and events

between themselves via simulation packets for entity state, impact, collision, fire,

initialization, radar, and weather data [ADST95].

2-9

User

(Terrain Database)
(Parameter Database)

SAFstation SAFsim

NETWORK

r '
Simulation
Packets

Persistent
Object Packets

Figure 2.2 SAFstation and SAFsim components of ModSAF

The Parameter Database contains the modeling parameters used in the construction of

the ModSAF system. This set of parameter files allows modification of the ModSAF system

without further computer programming. Both the SAFstation and the SAFsim components

have access to a Terrain Database. The SAFsim simulates objects known as ModSAF

'entities' (such as planes and tanks) which can behave autonomously. When a SAFsim

simulates a unit, the SAFsim not only creates the entities in the unit, it also builds a structure

corresponding to the unit hierarchy.

2.4.1.2 Scenario File organization ModSAF uses only one file to present a battle scenario

that might have hundreds or thousands of entities. ModSAF 2.1 defines 21 classes to describe

these entities. A scenario file consists of two parts: a header part and an entity part. The

2-10

header part includes some global data such as version number, number of objects and number

of entries. The rest of a scenario file is all about these entries. ModSAF reads a scenario file

sequentially according to this number of entries. An entity part also consists of two parts: the

file entry part and the class part. The important data of the file entry part is the size of class

which follows the entry part. Table 2.2 shows this data structure of a scenario file. As each

class from the scenario file is read, one large battle scenario is created.

Table 2.2 Data Structure of ModSAF scenario file

Name Data of Interest

Header Part
File Format
Protocol Version
Database Version
Number of Objects
Number of Entities

0
File Entry Serial Number

Variant Size
Class

1 File Entry

Class

i i

continue by number of objects in header part

2.4.2 Extended Air Defense Simulation (EADSIM)

EADSIM is a simulation of air and missile warfare used for scenarios ranging from few-on-

few to many-on-many. Each platform (such as a fighter aircraft) is individually modeled and

the interaction among the platforms is also individually modeled. EADSIM also models the

Command and Control (C2) decision processes and the communications among the platforms

on a message-by-message basis. Intelligence gathering is explicitly modeled as is the

2-11

intelligence information used in both offensive and defensive operations [TBE95]. The

general areas modeled are: air defense, offensive air operations, attack operations, multi-stage

ballistic missiles, air breathers, sensors, jammers, satellites, early warning, generic

noncombatants, communications, electronic warfare, terrain, weaponry, and areas of interest.

Figure 2.3 depicts an EADSIM Scenario playback.

wmmmmmmmmmmmswimmmmmmmmm

Figure 2.3 EADSIM Scenario Playback

2.4.2.1 EADSIM Architecture The EADSIM model consists of numerous processes and

process applications which perform three basic functions: simulation setup, execution of a

scenario, and post-processing and analysis. The simulation setup and post-processing and

2-12

analysis tools are run on a graphic window manager which provides the primary user

interface. The execution of a scenario is performed by a set of run-time models running in a

multi-process configuration. Figure 2.4 shows the processes and applications making up each

of these areas [TBE95].

Simulaiton Setup Rm- lime Mxfels Past- Smulaiton Aialysis

- Scenario Generation - Wndow- Bbsed

- Scenario Execution GF Decision Process Post- Processing

- Report Generation
- Scenario Playback

- Mip Gsneration
- Cff-Iine

Aialysis Tools i i

il

< ' 1 '

Techical Processes
F ^ F ^

nsk
Hies

Dsk
Hies

Figure 2.4 EADSIM Model Processes and Applications

2.4.2.2 Scenario File Organization A scenario file is made by EADSIM's Scenario

Generation. The data of the scenario is organized in a hierarchical structure on which each

level of the hierarchy is built on lower levels. The lowest level in the hierarchy is the

elements. Combinations of these individual component elements are then used to organize

System Elements that are deployed to form Platforms. Groupings of Platforms are built into

Laydowns, where the Platforms in the Laydowns are interconnected with Networks which also

2-13

use the Protocol elements. This Platform level corresponds to entities which most people

know. Areas of Interest (AOIs) can be created and associated with both Platforms and

Networks. The Map specification forms the geographic basis for the scenario. The scenario

is then a further combination of all of the lower level data [TBE95]. Figure 2.5 [TBE95] is a

diagram representing the data organization.

A HIERARCHY OF DATA ORGANIZES AND EXPEDITES THE
SPECIFICATION OF A SCENARIO

- SCENARIOS ARE THEN
A FURTHER COMBINATION
OF LOWER LEVEL DATA

- SYSTEMS ARE DEPLOYED

-ELEMENTS
COMBINE TO
MAKE SYSTEM
ELEMENTS

-INDIVIDUAL
COMPONENTS ARE
SPECIFIED AS
ELEMENTS

Figure 2.5 EADSIM Scenario Composition

2.4.3 Battlefield Simulation (BATTLESIM)

BATTLESIM is one of the Air Force Institute of Technology (AFIT) Parallel Discrete Event

Simulation (PDES) research efforts. The primary discrete event simulation (DES)

environments available for use at AFIT are Battlefield Simulation (BATTLESIM), the

Parallel Ada Simulation Environment (PASE), Very High Speed Integrated Circuit (VHSIC)

2-14

Hardware Description Language (VHDL) Simulation (VSIM), and Queuing Model

Simulation (QUEUESIM). These environments have evolved over the course of the AFIT

parallel simulation research program to employ parallelism using the Chandy-Misra

conservative synchronization approach as implemented in the SPECTRUM (Simulation

Protocol Evaluation Testbed using Reusable Models) host manager [Hill94]. DES is an

event-driven simulation approach in which the simulation changes state upon event execution

[HÜ194]. PDES is usually viewed as the decomposition of a single DES program into logical

units that can be executed concurrently on distributed processing architectures [Fuji93].

BATTLESIM is integrated with TCHSIM (Thomas C Hartrum Simulation) which is a

collection of general DES mechanisms and services and with SPECTRUM which is a parallel

simulation protocol testbed based on the LP (Logical Process) model.

2.4.3.1 BATTLESIM Architecture BATTLESIM is a battlefield simulation PDES

application supported by some lower-level components. Figure 2.6 [Hill94] shows the major

BATTLESIM, TCHSIM, and SPECTRUM components in the context of the general DES

architecture. The lowest level in the component is the AFIT version of SPECTRUM that

provides the host machine process management and communication services. The

SPECTRUM supports the TCHSIM as it manages the creation and communication between

each LP. The processing which supports TCHSIM contains both an input/output message

handler and synchronization logic for inter-LP message flow control. TCHSIM is an object-

oriented collection of structures and operations that provide basic simulation services. It also

is simulation kernel, providing a simulation clock, a NEQ (Next Event Queue), a top-level

event dispatcher, and structural definitions for simulation events and relationship mappings

[HÜ194].

2-15

BATTLESIM
Sectors

Player classes and players
Event classes, predictors, and handles

Events
Player sets

Object manager
Event scheduler

Mappings

SPECTRUM
LPs

LP manager
I/O channels and clocks

Filter logic for event sequencing,

null messages
Message buffers

Simulation Application

Simulation Kernel *
^--* TCHSIM

NEQ
Clock

 Host System
" Low Level
Processor manager

message transmission and receipt
Processors

Interconnection network

Figure 2.6 BATTLESIM, TCHSIM, and SPECTRUM

2.4.3.2 Scenario File Organization A scenario file of BATTLESIM generally consists of

two parts. The first part is a Header part which declares global data for the scenario file.

The second part is the Entity part that can be repeated many times. Table 2.3 shows the

organization of a scenario file. In the Entity part, there are several other repeated Entity

parts, as many as defined by the number of each part.

2-16

Table 2.3 BATTLESIM Input File

Name Detailed Contents
Header

Part
Version Number
Terrain File Name

Minimum, Maximum Coordinates
Sector Number of Sectors

Describing Sectors (can be repeated)
Icon Number of Icons

Describing Icons (can be repeated)
Object Type, ID, Location, Velocity,

Orientation, Limitations
Entity
Part

Route Number of Route Points
Describing Route Points (can be repeated)

Sensors Number of Sensors
Describing Sensors (can be repeated)

Armaments Number of Armaments
Describing Armaments (can be repeated)

Targets Number of Targets
Describing Targets (can be repeated)

Defensive
System

Number of Defensive Systems
Describing Defensive Systems(can be repeated)

2.5 Summary

This chapter discussed the background on Distributed Interactive Simulation (DIS)

and a new technology area, Advance Distributed Simulation (ADS), as well as Computer

Generated Forces. It also provided a brief synopses of some SAF simulations which were

recently developed and available for experimentation at AFIT. Specifically, this chapter

addressed how each simulation works and what are the differences among them. It is

important to first understand the architecture of each simulation and the organization of their

scenario files before we can design a process for translating between these formats.

2-17

7/7. System Requirements and Desien

3.1 Introduction

This chapter describes the requirements for the Scenario Translator and their incorporation

into the system design. I specified the definition of several essential words in my thesis work

area, and delineated General objectives of the system design in the requirements section.

Design details follow in the design section. General requirements are introduced in the

discussion of the definition phase. The overall requirements formed the basis for system

design, while the detailed requirements translated into specific system capabilities.

3.2 Definitions

We use the following definitions throughout this document as shown below:

• Simulation: a method for implementing a model over time

• Scenario: a sequence of events or a possible course of action

• Scenario File: a file which stores a scenario

• Source Scenario: a scenario file which will be translated to another format

• Target Scenario: a scenario file which is produced by a translation tool

• Source Simulation: a computer simulation which operates a source scenario

• Target Simulation: a computer simulation which operates a target scenario

• Transitional Prototype (TP): an intermediate prototype to translate a source scenario to a target

scenario

• Transitional Source Scenario Prototype: a data structure in computer memory which stores a source

scenario

• Transitional Target Scenario Prototype: a data structure in computer memory which stores a target

scenario

• Scenario File Translator (SFT): a translation program that converts a source scenario to a target

scenario

3-1

3.3 Requirements

The requirements are divided into five main areas:

• Defining a Transitional Prototype,

• Loading a source scenario of a source simulation

• Mapping the source scenario to the TP,

• Remapping the TP to a transitional target scenario prototype, and

• Saving the transitional target scenario prototype as a target scenario for a target

simulation.

The first requirement, defining a TP, is the most important part of my work because a good

prototype can accommodate common simulations. This makes the system extensible and

reusable. The second requirement, loading a source scenario of a source simulation, stems

from the necessity to convert a battle scenario to one which can be run by another simulation.

The third goal, mapping the source scenario to the TP, is also important since it determines

how much information can be translated from the original battle scenario to another

simulation. Fourth, remapping the TP to a transitional target scenario prototype is a

necessary step to convert a source scenario to a target scenario. Finally, saving a transitional

target scenario prototype is significant since all my effort is worthless if the target simulation

cannot read the target scenario and work fine.

3.3.1 Defining a Transitional Prototype

3.3.1.1 Insufficiency ofDISPDU As mentioned previously, creating a well-defined

prototype is the most important part of this work. Initially, it was desired to select a widely-

used prototype. Such a selection would provide better accuracy in translating simulation

3-2

scenarios as well as save time by precluding the necessity of defining a new prototype. For

these reasons, it was decided to use DIS PDUs to define the TP, since most simulations either

support or will support that protocol. DIS PDUs send current events over the network, so

other heterogeneous simulations can reorganize the scenario by receiving these PDUs. It also

provides for the simulation to predict the direction of an entity by using the dead reckoning

algorithms. Unfortunately, DIS PDUs do not provide certain critical pieces of information

including the first position of an entity, amount of munitions, mission, etc. Thus, although it

is possible to ascertain where an entity is going, it is not possible to determine where it came

from, why it is on its current heading, or what its actions will be when it arrives at its

objective. Table 3.1 provides comparison between the type of information which each

simulation has and its matching data in DIS PDUs.

Table 3.1 Matching Comparison between Simulation Scenarios and DIS

Simulation
Name

Number of Variables DIS Matching
Number

Percentage
Header Entity Subtotal

ModSAF 11 271 282 17 6.0

EADSIM 167 215 382 13 3.4

BATTLESIM 15 51 66 17 25.8

Total 193 537 730 47 6.4

3.3.1.2 Defining a New Prototype The previously-mentioned limitations of DIS PDUs

required defining a new prototype which contains the static and scenario-wide information

missing in the DIS PDUs. In order to develop a new prototype, it is first necessary to define

those piece of information which form the basic scenario. First of all, the scenario entity and

the mission to be performed by the entity are the basic compositions of a scenario. There are

3-3

thousands of different entity types. For example, an entity can be defined as a platoon or as

ten army divisions. It could be something as small as an anti-personnel mine or as large as an

airplane, tank, missile base, or aircraft carrier. An entity also has its own initial position,

mission, armed capacity, orientation and velocity as well as entity ID and entity name. Items

such as entity ID are especially important because they allow for unique identification. The

capacity of their armament is also quite different, just as the amount and kind of munitions

that can be loaded on an F-16 may vary. However, the entities themselves do not comprise

the entire scenario. Only after each entity is given a mission is a scenario brought to life.

Missions also depend on the types of entities. Missions for ground units are quite different

than those for air units. Thus, both entity and mission must be described when defining a new

prototype. Furthermore, the effect of the environment cannot be neglected in composing a

scenario. Mountains, buildings and weather conditions must be considered since both sides

are not fighting on a plain where everybody can see each other directly. Finally, not-readily-

quantifiable items such as willingness to fight, morale, and experience can also affect a

scenario's outcome and are worth consideration. A more detailed discussion of this topic

appears in Section 3.3.3, Transitional File Specification.

3.3.2 Loading a Source Scenario The first step to convert one battle scenario to another is

to read the source scenario. This is accomplished in most simulations via embedded

procedures. Since the objective of this work was to develop a translator program, it was

necessary to separate the scenario initialization code that simply reads the source scenario.

This has the benefit of greatly simplifying the SFT's reader. It is reasonable that the resulting

data by the loading system should be same as the one by a distributed simulation. In chapter

Four, Implementation, I discuss advantages and disadvantages with using the source

3-4

simulation's reading module directly or creating a new simple reading module to load a

scenario.

3.3.3 Mapping to a Transitional Prototype As described in Section 1.3, using the

intermediate format is efficient because it is not dependent on the number of existing

simulations. As we can see in Figure 3.1, only two routines are needed even when a new

simulation is developed.

Figure 3.1 Conversion using an Intermediate Format

Matching each simulation to the TP guarantees greater extensibility than a direct matching of

each simulation to one another as mentioned in Section 1.4, Approach. When converting to

the TP, it is important that the mapping should be performed to the most general and

acceptable data which can be remapped to any simulation. The position of an entity is a good

example. The position of an entity can vary between simulations, because of terrain

differences and relative coordinates used by each simulation. If the coordinates of the entity

3-5

are saved as they are when mapping to the TP, it may cause confusion in other simulations.

Additionally, unless the defined TP covers all of the information contained in a source

scenario, parts of the scenario may become lost.

For example, there are two simulations, each of which has a different purpose.

Denoting the scenario files associated with each simulation as SI and S2, respectively, we

want to translate SI to S2. SI is therefore a source scenario while S2 is a target scenario.

After mapping SI to the TP, the mapped area is shown by B in Figure 3.2. This results in

the area shown as \ZA becoming lost. When we define the more general intermediate

prototype, the mapped area (Ö area) becomes larger and the lost data (IZd area) becomes

smaller.

Figure 3.2 Mapped and Unmapped Area into Intermediate Format

3.3.4 Remapping to a Transitional Target Scenario Prototype After mapping a source

scenario to the intermediate format, TP, it is ready to be subsequently changed to any format.

When we wanted to change scenario SI to scenario S2 in the previous example, it was

3-6

necessary to convert the mapped area to a writable structure to save as scenario S2, in other

words, to map the common area between SI and TP to a common area between TP and S2.

In the mapped area in the previous example, the part which is common between the

intermediate format and S2 is the area shown as Ml in the Figure 3.3.

Figure 3.3 Common Area Between Intermediate Format and Target Scenario

Of prime importance in the file creation is to consider data which is defined in the

TP, but cannot be re-mapped to the target scenario. In most cases, this data affects the other

scenario in a limited manner since this area is information for only the target scenario such as

host computer name, directory path, set-up data for background color, image type, and entity

icon format. Thus, the loss of the most data in this area is acceptable. However, there still

exists some critical data of a target scenario which is not represented in the source scenario.

area in Figure 3.4). The problem of undefined can be mitigated This results in lost data (§i

by mapping to commonly used default values. For example, assume a scenario needs the

angle of the radar beam of an aircraft, but that information is not available. In this instance,

3-7

that information can be replaced by the common average angle of the radar beam, a value

which is commonly known and can be readily approximated.

Figure 3.4 Unrepresented Area In a Target Scenario

3.3.5 Saving the Transitional Target Scenario Prototype After mapping the intermediate

format, TP, to a transitional target scenario prototype, a new scenario file is created. The

newly saved scenario file should be readable by the target simulation. Here we also must

determine whether to use an existing output module within the target simulation's code or to

develop a new module. Chapter Four discusses this issue in more detail.

3.4 Design

3.4.1 Hardware Specification I designed this program to be machine independent.

Platforms used in testing were the SGI and Sun Workstations.

3-8

3.4.2 Software Specification

3.4.2.1 General Organization Figure 3.5 shows the general organization and operation

process of this program. The Translator, the core of this program, loads the source scenario

to be translated, maps to the TP, and then saves as a target scenario. The TP can either be

stored to disk for future use or immediately converted to another target scenario.

Translator
Simulation
Scenario

ModSAF 1-*

EADSM 1 *~
r S

BattleSIM | *•
\-*

Transitional File

TransFile

* L: Loading
S : Saving

Figure 3.5 Translator General Diagram

3.4.2.2 User Interface I designed a Graphics User Interface (GUI) using the Motif library

to provide a convenient interface for the user. In the instance where the Motif library is not

available on the machine of implementation, I also made the program with a command line

interface.

3-9

3.4.2.3 Object Diagram The Figure 3.6 shows the object diagram of the Scenario File

Translator. This top-level diagram also shows the unique object classes identified for the

SFT based on the decomposition of system requirements. The seven objects within the SFT

are: the Translator object, the Scenario File object, the Prototype object, the Transitional File

object, the Entity object, the Character object, and the Mission object. The Simulation object

is composed of the Scenario File object, the Terrain object, and the Initial Setting object.

Since the SFT only interfaces with the Scenario File object, only this object is important to

my design. The Scenario File object consists of the Entity objects, which have their own

characters and missions as mentioned in Section 3.2.1.2, Defining a New Transitional

Prototype.

The Translator object contains the Prototype and Transitional File objects and uses

the Scenario File object to load and save the TP. To map from the source scenario to a target

scenario, the Translator object loads into memory each simulation transitional format. The

reason why the transitional scenario prototype is needed is discussed in Section 3.4.4,

Transitional Target Scenario Prototype. After the Translator loads the source scenario, it

maps the scenario to the Prototype object. The Translator can save the scenario as either the

target scenario or the Transitional File format.

To save to the target scenario, two steps are needed. The first step is to map the TP

to the transitional target scenario prototype, then the Translator program saves the TP as a

target scenario, which the target simulation can then use.

3-10

Translator layer Simulation layer

Translator
nsss

Simulation

has
0

consists
of

Prototype Trans. Format Scenario File Terrain Initial Setting

? 0

Trans. MidSAF Ptype
if

Entity

Trans. EffiSM Ptype
has

Trans. BOTIESIM Rype B

Character Mssion

Transitional Prototype

* Trans. : Transitional
Rype : Prototype

Figure 3.6 Scenario Translator Object Diagram

3.4.3 Transitional Prototype Requirements

3.4.3.1 Ideal Prototype The ideal format for the TP is a set of information which covers all

data for all simulations including those which are not currently supported by the translator.

Clearly, this is not practical; therefore, including parts generally common to all simulation

scenarios is advisable.

3.4.3.2 Proposed Prototype The basic essential composition of a scenario, the

characteristics and missions of the entities, have to be describable in any format I propose.

Extensibility of the translator is promoted when the way to address the entity and mission is

3-11

accomplished through general methods. Figure 3.7 shows the relationship among ModSAF,

EADSIM, BATTLESIM, and the TP.

ModSAF

BATTLESIM

EADSIM

Figure 3.7 Relationship between Simulations and Suggested Prototype

The overlapping parts in the Figure 3.7 indicate the common parts between any two

simulations. The size of each rhombus and a circle in the figure does not present the actual

file size of each scenario and the intermediate format, respectively. The center part where the

three rhombuses overlap is the most common information which is present in all three

simulations. As is evident in the figure, some data can be lost in mapping from a scenario

into the TP. In this case the default values should be matched to the undefined part in the TP

during mapping from the TP to a target scenario. How I accomplished this is discussed in the

following section.

3-12

3.4.4 Transitional Scenario Prototype Specification

When loading a source scenario, it is desirable to read all information contained in the using

source simulation's original data structures. Thus the transitional source scenario prototype

are designed to read all information whether needed by another simulation or not to minimize

data loss. The rest of this section describes the data structure of the source scenarios and

tells how these structures influenced the design of the transitional data structure. The reader

may refer to Appendix A for more details about each transitional source scenario prototype.

3.4.4.1 ModSAF As mentioned in section 2.4.1.2, a ModSAF scenario file is divided into

two sections: a Header part and a Class part. Figure 3.8 illustrates the top-level data

structure of a ModSAF scenario file.

Transitional ModSAF Scenario Prototype

Pointer to Header Part
Array Pointer to File Entry
Array Pointer to Class part

Figure 3.8 Transitional ModSAF Scenario Prototype

3.4.4.2 EADSIM It is not possible to create a scenario by reading only one file in EADSIM

because a complete scenario is contained in several different files. The important files among

them are the laydown file which stores the platforms describing each entity, and the scenario

file which describes the initial conditions and the name of laydowns. Figure 3.9, Figure 3.10

and Figure 3.11 shows the Prototypes for a 'scenario file', a 'laydown file', and a platform.

3-13

Transitional EADSIM 'Scenario File' Prototype

Structure of Header
Pointer to Laydown File Name
Structure of Element Map
Pointer to Network File
Structure of Zero thru Max Host
Structure of Unused String
Structure of Debug
Structure of Host
Structure of Max File thru C3I Output
Structure of Truth
Structure ofSPDS
Structure of Log
Structure of Statistics
Structure of Probability Statics
Structure of File
Structure of Earth Rad
Structure ofHzulu
Structure of Display thru Route
Structure of Format thru Starting
Structure of Processing
Structure of Write
Structure of C31 Log
Structure of Image
Structure of Trans Rad File Path
Structure of Time
Structure of External
Structure ofTBA

Figure 3.9 Transitional EADSIM 'Scenario File' Prototype

Transitional EADSIM 'Laydown File' Prototype

Version Number
Number of Platforms
Pointer to Platform

Figure 3.10 Transitional EADSIM 'Laydown File' Prototype

3-14

Transitional EADSIMPlatform Prototype

Military ID
System ID
Commander ID
Color Index
Pointer to Sensor
Number of Communicaitons Devices
Pointer to Com Dev
Pointer to Jammer
Number ofAssests
Pointer to Asset
Number of Targets
Pointer to Target
Number of IFTU Platforms
Pointer to IFTU Platform
Boolean of Sim, Hhour, Local, Zulu, HMNo Delim, HMS, As Entered
String of Time Suffix
Boolean of Log Track Event, Laser Absolute, Laser Rest Az, laser Rest El
Platform Type
Structure of Satellite
Boolean of Use Route Data
Pointer to Use Route Data
Pointer to Not Use Route Data
Number ofPTLs
Pointer to PTL
Number ofLCS
Pointer to LCS
Number of Decoys
Pointer to Decoys
Number ofSurv Platform
Pointer to Surv Platform
Boolean ofCMData, EM Com Default, EM Con Authority
Pointer to Aircraft
Pointer to Airbase

Figure 3.11 Transitional EADSIM Platform Prototype

3.4.4.3 BATTLESIM It is sufficient to read one file for loading a BATTLESIM scenario.

Figure 3.12 depicts the Prototype for a BATTLESIM scenario.

3-15

Transitional BATTLESIM Prototype

Object Type
Object ID
Current Time
Update Origin
Number of Events
Structure of Location
Structure of Velocity
Structure of Orientation
Structure of Rotation
Player Size
Mass
Pointer to Polygon List
Pointer to Subclass

Figure 3.12 Transitional BATTLESIM Prototype

3.4.4.4 Transitional Prototype Table 3.2 shows a data structure of the TP. Each structure

consists of variables that have same character. The column 'Type' describes the variable

format of the structure, and the enumeration type is described in Appendix B. The variable

name 'Number of Entities' indicates how many entities are contained in the transitional file.

The remainder of the file contains specific information about each entity. The entity field

structure consists of nine subfields: Entity Header, Entity Type, Entity Location, Entity

Velocity, Entity Orientation, Munitions, Sensor, Jammer, and Task field. Each entity is

uniquely identified by the number contained in the Entity Header field. The Entity ID should

be unique in a scenario. The Force ID in the Entity Header structure indicates whether the

entity is a friendly or enemy force.

If the entity has a name, the Entity Name field in the Entity Header stores it. The

Entity Type Structure shows the kind of the entity. It follows the DIS standard as specified in

the document, Enumeration and Bit-encoded Values for use with IEEE 1278.1-1994,

Distributed Interactive Simulation - Application Protocols [IST94-1]. I designed for

3-16

Table 3.2 Data Structure of Transitional File

Name
Structure Name Variable Name

Type

Number of Entities Integer
for each entity
Entity Header Entity ID

Force ID
Entity Name

Integer
Integer - enumeration
Character String

Entity Type Domain
Country
Category
SubCategory
Specific

Entity Location Location X
Location Y
Location Z

Integer - enumeration
Integer - enumeration
Integer - enumeration
Integer - enumeration
Integer - enumeration
Float
Float
Float

Entity Velocity Velocity X
Velocity Y
Velocity Z

Entity Orientation Psi
Theta
Phi

Number of Kind of Munitions
for each munition
Muntion Type Domain

Country
Category
SubCategory
Specific
Amount

Number of Sensors
for each sensor
Sensor ID

Number of Jammers
for each jammer
Jammer ID

Number of Tasks
for each task
Task Type

Float (meter/sec)
Float (meter/sec)
Float (meter/sec)
Float
Float
Float
Integer

Integer - enumeration
Integer - enumeration
Integer - enumeration
Integer - enumeration
Integer - enumeration
Integer
Integer

Character String
Integer

Character String
Integer

Integer - enumeration

Repeated as declared in Number of Entities

program extensibility by saving in DIS format, and a new entity type can be added by

referencing the DIS Enumeration Document. The Entity Location Structure shows the initial

3-17

position of the entity. For global use of the TP, this position must be converted to a global

position. It is also designed for program extensibility using the coordinates system which DIS

uses. The Entity Velocity Structure indicates the initial speed of the entity in meter/sec. The

Entity Orientation contains the entity's direction vector in 3D space. Entity Velocity and

Entity Orientation also use the DIS format. The Number of Kind of Munitions field shows

the munitions load of the entity. For example, an F-16 can carry six US Mavericks, two US

Sidewinders, 15 US Mk82s, and 2,000 US M50s. In this case the Number of Kind of

Munitions field is four. The Munitions Type also follows IST94-1. Some entities have

sensors and/or jammers for radio communication. That information is contained in the

Sensor, and Jammer fields, respectively. The Task field indicates how many tasks the entity

will perform. There can exist numerous missions depending on the specific characteristics of

each simulation. I adopted the task types which ModSAF simulation currently uses for an

initial implementation. Interested readers can refer to Appendix C for more detail on each

field. The Number of Entities in the transitional file is given by the 'Number of Entities'

entry declared on the first line. In the case where the number of items is initially unknown,

memory requirements are minimized through dynamic memory allocation.

3.4.5 Translation Tables

The next several figures and table represent the scenario file data from each scenario source

and how this data is mapped into the TP. The left-hand side of the Table 3.3 shows the

number of variables that are in common area between two scenario in each simulation; the

right-hand side of the table shows how many variables are defined in the TP. Figure 3.13,

3.14, and 3.15 depict the mapping of the scenario data from ModSAF, EADSIM, or

BATTLESIM, respectively, into the TP. These figures use the same notation as in [Gard93].

3-18

Table 3.3 Percentages for Common Variables between Two Scenario

Simulation
to

Simulation

Number of
Common Variables

Number of
Common Variables

defined in TP
Percentage(%)

ModSAF to EADSIM 18 18 100

ModSAF to BATTLESIM 21 21 100

EADSIM to BATTLESIM 24 24 100

3.5 Summary

This chapter defines the requirements for converting one scenario file to another. These

requirements can be grouped into five main areas: first, defining a TP; second, loading a source

scenario of a source simulation; third, mapping the source scenario to the TP; fourth, remapping

the TP to a transitional target scenario prototype, and finally, saving it as a target scenario for a

target simulation. Specific implementation details of the goals are discussed in the next chapter.

3-19

ModSAF Class Transitional Prototype

Unit Class

overlay ID

force TD
object Type

marking

location

direction

speed

munitions

Other data

Task Class

model

Other data

Task State Class

model

Other data

Task Frame Class

name

unit

Other data

Entity ID

Task Type

Heade:

Type

Loc.

Vel.

Orien.

Muni.

iensor
ammei

Task

Legend

Direct Copy
Floating Point
Conversion

Derived

Figure 3.13 Transitional Prototype mapping for ModSAF scenario

3-20

EADSIM Transitional Prototype

Scenario File

Laydown File Names

Other data

Laydown File

Mil ID

System ID

Sensor Name

Jammer Name

structure Way Point

Other data

Legend

Direct Copy
Floating Point
Conversion

Derived

Legend

Type

Loc.

Heade •

Orien.

Muni.

Sensor
Jammer

Task

Filled

Unfilled

Figure 3.14 Transitional Prototype mapping for EADSIM scenario

3-21

BATTLESIM Transitional Prototype

Min. Coordinates

Max. Coordinates

Icon Name

Object Type

Object ID

Coordinates

Velocity

Yaw rate

Pitch rate

Roll rate

Route Points

Sensor Name

Armament

Defensive

Other data

Legend

Direct Copy
Floating Point
Conversion

Derived

Entity ID

Force TD

Entity Name
Domain

Country
Category

Snhfategnry

Specific

Location X

Location Y

Location 7

Velocity X

Velocity Y

Velocity 7

Psi

Theta

Phi

Domain
Conn fry

Category
SubCategory

Specific
Amount

Sensor TD
Jammer ID

Legend

Heade r

Type

Loc.

Vel.

Orien.

Muni.

Sensor
Jammer

Task

Filled

Unfilled

Figure 3.15 Transitional Prototype mapping for BATTLESIM scenario

3-22

IV. System Implementation

4.1 Introduction

This chapter discusses the implementation of the Scenario File Translator (SFT)'s design defined

in Chapter 3. This implementation utilizes five subsystems: a loading system, a mapping system,

a remapping system, a saving system, and a user interface system. The loading system reads a

source scenario and stores it to a source scenario prototype. The mapping system transforms the

transitional source scenario prototype to a Transitional Prototype (TP). The remapping system

transforms the TP once more into a transitional target scenario prototype. The saving system

writes the transitional target scenario prototype as a scenario file which can then be run by the

target simulation. Finally, the user interface system provides a Graphics User Interface (GUI) to

this program easier to run. All programs are written in the C programming language and were

tested on SGI and Sun Workstations.

4.2 Loading a Scenario File

Reading a scenario file stores the scenario in computer memory. For this to work, a data

structure which defines the organization of the scenario is needed. This structure is called the

transitional source scenario prototype. Since the SFT operates three simulations' scenario types,

this section discusses the loading system for each of the three scenarios.

4.2.1 Loading a ModSAF Scenario File There are two ways to load a ModSAF scenario file.

The first way is to use built-in libraries in the ModSAF program which do more than simply read

the file and the other are to design and develop a new function to only read the scenario file. Each

method has its own advantages and disadvantages.

First, using the ModSAF built-in libraries, we save time since we do not need to design

and implement new functions; however, it is necessary to include many unnecessary files even

4-1

though a large number of unused functions may be contained in those files. This results in

excessive compilation requirements. This method is inefficient, since the loading system of the

SFT needs just one routine to read a scenario file. Conversely, designing and implementing a new

function is attractive, because it simplifies the general organization of the program. On the other

hand, this method requires additional work for designing a scenario data structure to implement

the loading system. Since program readability and understandability are more important, I chose

to design and implement a new library.

As mentioned in Section 2.4.1.2, the structure of a ModSAF scenario file consists of two

parts: the Header part and the Entity part. The Header part describes the scenario organization,

and the Entity part describes the entities in the file. The Entity part is also divided into the File

Entry part and the Class part. The File Entry part has basic values for scenario class, and the

Class part describes all about the class. The most important information in the Header part is the

number of entities in the scenario file. The ModSAF loading system reads classes individually.

The number of classes read is given by the number of entities. In the File Entry part, the object

type and the variant size of the class is also important. Moreover, it is necessary to combine the

classes with their related entities. Once the scenario file has been read, it is stored in the

transitional prototype data structure for ModSAF scenarios. The minimum memory requirement

to read a ModSAF scenario file with varying number of entities is described in Table 4.1.

Examples shown are for cases where each entity has just one task.

4.2.2 Loading an EADSIMScenario File Because EADSIM scenarios are saved in a text

format, it is relatively easy to understand their organization and to develop an internal data

structure for EADSIM scenario file information.

Two primary files are needed to build an EADSIM scenario: the scenario file and the

laydown file. The laydown file stores all the information about the entities which compose a

scenario, and the scenario file describes initial setup conditions and references the related laydown

4-2

Table 4.1 Required Memory Size for Loading a ModSAF Scenario File
(* B : Bytes)

Entity
Number

Header
Part

Number of
Class

Entity Part Total
(KBytes) File Entry Part Class Part

1 72 B 30 360 B 3,764 B 4.1

100 72 B 3,000 36,000 B 376,400 B 405.7

1,000 72 B 30,000 360,000 B 3,764,000 B 4056.7

10,000 72 B 300,000 3,600,000 B 37,640,000 B 40,556.4

file names. Additional files are required to organize a scenario; however, these two former files

are more important than the others.

To load an EADSIM scenario, you must know which laydown files are connected to a

scenario. The laydown files are read in order to get the entity information composing the

scenario. Once this data is stored in the transitional EADSIM source prototype as defined in

Chapter 3, then it is possible to progress to the next phase, the mapping phase. This stage is

discussed in the Section 4.3.

Loading an EADSIM scenario is straightforward; just read the text files into the

transitional EADSIM source prototype data structure. In the case of a scenario file, only the

laydown file names in this file are important since the remainder of its data is only used for

building the EADSIM scenario itself. However, the loading system reads all the data in an

EADSIM scenario file for further use since currently unused data may be useful later.

In the case of EADSIM, the required memory size of a typical scenario file including

laydown file names, with one entity is about 8.3 Kbytes. As with ModSAF, EADSIM scenario

file size is dependent on the number of entities. Table 4.2 shows typical cases for scenarios with

varying number of entities.

4-3

Table 4.2 Required Memory Size for Loading an EADSIM Scenario File

(* B : Bvtes)
Entity Number Scenario File Laydown File Total (KBytes)

1 7,509 B 988 B 8.3

100 7,509 B 98,000 B 103.8

1,000 7,509 B 988,000 B 972.2

10,000 7,509 B 9,880,000 B 9,655.7

4.2.3 Loading a BATTLESIM Scenario File It is also fairly straightforward to load a

BATTLESIM scenario file, since it is also saved as a text file like an EADSIM scenario file. To

load a BATTLESIM scenario file, the data is extracted from each line in the source file into the

transitional BATTLESIM source prototype. When reading a data line from the source scenario

file, if the first character of the line is an asterisk defined by the programmer, it skips the line and

reads the next line automatically so that some comments can be written in the scenario file for

providing better understanding. Figure 4.1 shows this algorithm.

char Data_Line[MAX_LINE_LENGTH];
while (!feof(File_Ptr)) /* read until end of file */
{

fgets (DataLine, MAX_LINEJLENGTH, FilePtr);
switch (Data Line[0])
{

case '*': /* ignore all lines that starts with characters */
case '\n': /*'*', ,\n\ '\0', or space */
case '\0':
case ' ':

break;
default:

return GoodLine; /* Boolean value */
} /* end of switch */

} /* end of while */

Figure 4.1 Algorithm for Reading a BATTLESIM Scenario file

4-4

Assuming an entity has only one route point, sensor, armament, target, and defensive system in a

BATTLESIM scenario, then 276 Bytes are needed for a scenario with one entity. Table 4.3

describes these memory requirements for similar scenarios with different numbers of entities..

Table 4.3 Required Memory Size for Loading a BATTLESIM Scenario File

Entity Number Header Part Entity Part Total (KBytes)

1 144 B 132 B 0.27

100 144 B 13,200 B 13.0

1,000 144 B 132,000 B 129.1

10,000 144 B 1,320,000 B 1,289.2

4.2.4 Loading a Transitional File As will be seen in Section 4.5.4, a Transitional File is also

saved in text format so it can be easily verified when viewing the components in it. A

Transitional File is read and loaded into the Transitional Prototype data structure using the same

algorithm for loading a BATTLESIM scenario file.

The required memory size for each entity in the TP depends on the entity's number of

tasks. If an entity has an 'Assault' task (the largest task with respect to memory requirements),

the entity needs 271 Bytes. This is shown in Table 4.4 with other examples.

Table 4.4 Required Memory Size for Loading Transitional File
(» B : Bytes)

Entity Number Without Task Task Total (KBytes)

1 218 B 53 B 0.26

100 21,800 B 5,300 B 26.4

1,000 218,000 B 53,000 B 264.6

10,000 2,180,000 B 530,000 B 2,646.4

4-5

4.3 Mapping a Scenario Prototype to a Transitional Prototype

Mapping to a Transitional Prototype (TP) is necessary to convert a source scenario to a target

scenario. The more source types we map to the TP, the more data we remap to target scenario

prototype and the more we increase the conversion percentage. This results in a more well-

translated target scenario. Because the SFT uses scenarios from three simulations, six mapping

routines are needed. This is because each simulation needs two mapping routines: one to the TP

from the transitional source scenario prototype, and another from the transitional target scenario

prototype to the TP. This section discusses mapping a transitional source scenario prototype to

the TP. Section 4.4 discusses remapping the TP to a transitional target scenario prototype.

4.3.1 Mapping a ModSAF Prototype to a Transitional Prototype A ModSAF scenario file is

stored internally as a transitional ModSAF prototype as defined in Section 3. Mapping from this

structure to the TP is done by traversing the stored structure. Ten of the 21 ModSAF classes are

essential for mapping to the TP. They are the Overlay Class, the Point Class, the Line Class, the

Sector Class, the Unit Class, the Task Class, the Task State Class, the Task Frame Class, the

Task Authorization Class, and the Minefield Class. Among them, four classes are more useful

for mapping to the TP (see Figure 3.13). To begin, it is necessary to determine how many entities

there are in a scenario file. The number of the entities is same as the Unit Class number in the

ModSAF scenario file. If the number of the entities in a scenario file is 50, then the Unit Class

number is also 50. Thus, if Unit Class number is determined while traversing the transitional

ModSAF prototype, the number of the entities in the TP is found easily. Since the Unit Class has

direct information of Entity ID, Force ID, and Entity Name in the TP, every time a Unit Class is

detected they are mapped to the TP using these items. The TP Entity Type is stored in the DIS

format which has Domain, Country, Category, SubCategory, and Specific values. The variable

'objectType' in a Unit Class is related to the DIS format by a ModSAF function which converts

this variable to the DIS format.

4-6

Since ModSAF entity location uses the topocentric coordinate system in which the origin

of the coordinates is given point, we cannot directly use these coordinates within the TP. It is

necessary to match this location to the DIS geocentric coordinates. The origin of the geocentric

coordinate system in DIS is the centroid of the earth as shown at Figure 4.2 [IST94]. ModSAF

also provides a function to support this conversion.

North Pole

Prime
Miridian

Xaxis

90 Efeg East

Yaxis

Figure 4.2 Geocentric Cartesian Coordinates in DIS

Since ModSAF must map Entity Velocity and Entity Orientation to DIS formats when it

sends DIS PDUs, we can also use functions to build the TP. The kind of munitions in an entity is

known from a 'munition' variable in a Unit Class of ModSAF scenario file. Another ModSAF

function converts this object type to a DIS format is also used here. The amount of munition that

the entity has is also stored in the 'munition' variable in a Unit Class. The Task Type in the TP

can be determined after integrating several classes in the ModSAF scenario file. Some classes

4-7

which help to determine the TP Task Type are the Task Class, the Task State Class, the Task

Frame Class, and the Task Authorization Class. ModSAF 2.1 defines 33 tasks, and the SFT

accommodates all of them to provide a complete task mapping. Appendix B shows the task types

defined within the TP.

4.3.2 Mapping an EADSIMPrototype to a Transitional Prototype Of the two data structures

in the EADSIM prototype, i.e., one for the scenario file and the other for a laydown file, only the

data structure corresponding to the laydown file can be directly mapped into the TP since the data

in the scenario file is EADSIM specific except for the laydown file names. Specifically, five data

items from the laydown data structure cover almost every part of the TP. The Entity ID and the

Entity Task in the TP Entity Header are not known directly from the laydown file, so the most

widely used default values are put into them. The Entity ID is produced sequentially whenever an

Entity is detected, and when the entity is an aircraft the Entity Task is either 'Assault Ground

Target' or 'CAS Mission' since it is required to attack all enemy forces on its path (See Figure

3.14).

We determine the Force ID in the Entity Header part, whether it is friendly or an enemy

force, after checking the System ID in an EADSIM scenario file. The TP Entity Name is known

when referring to the EADSIM Military ID. The TP Entity Type is saved as an enumeration type

in DIS format using the EADSIM System ID. Although, there is no item in the EADSIM

prototype which indicates an entity's initial location, the starting location can be determined as

the first point in the path the entity passes through. This point must also be changed to a DIS

geocentric coordinate system value.

We derive the TP Entity Orientation by computing the difference between the first and the

second entity positions in its path. This difference is converted to the DIS format, and stored to

the Entity Orientation in the TP. An entity's munition load is determined by referencing another

4-8

file in EADSIM using the System ID of the entity. This data must be converted into the DIS

format. The Sensor Name and the Jammer Name are determined from the platform of the entity

directly.

4.3.3 BATTLESIMPrototype to Transitional Prototype The BATTLESIM prototype consists

of the Header part and the Entity part as described at Section 2.4.3.2. The items in the Header

part to match to the TP include the icon definition records as well as the minimum and maximum

coordinates of a terrain database. Minimum/maximum coordinates are needed when converting

the entity position to geocentric coordinate system in DIS, and Icon Definition Records are for the

type of the entity. The datum that is not mapped directly to the TP from a BATTLESIM

prototype is the Task Type. We use the most widely accepted default values here. In case of an

aircraft, we set the Task Type to either 'Assault Ground Target' or 'CAS Mission.' The task

'Assault' or 'Move Task' is used for a ground entity.

We derive the TP Entity ID from the BATTLESIM object ID. Icon Name determines the

Force ID, Entity Name, and Entity Type of the TP. Entity with US icon name is recognized as

friendly; Soviet icon name characterizes entity as an enemy. Otherwise, the entity is regarded as

'others.' The TP Entity Type is also determined by the icon name and translated into the DIS

format. Table 4.5 gives some examples for mapping the BATTLESIM icon name to a DIS Entity

name.

Table 4.5 Icon Name in BATTLESIM vs. Entity Name in DIS

Icon Name in BATTLESIM Entity Name in DIS
fl8 FA18
mig USSR Mig21

missile US CG41
tank US M1A1
truck US M35A2

4-9

The TP Entity Location is calculated using the coordinates of the entity and the

minimum/maximum coordinates of the terrain file in the BATTLES IM scenario file. The TP

Entity Velocity and the TP Entity Orientation are described in the BATTLESIM scenario file;

however they must be converted into the DIS format. The munition type of an Entity is related to

the BATTLESIM armament type; however, it cannot be used directly in the TP, but is converted

to DIS format. The entity's Sensor ID and the Jammer ID are related to the Sensor Name and

Defensive system in BATTLESIM.

4.4 Remapping a Transitional Prototype to a Transitional Target Scenario Prototype

In the process of converting a TP to a target scenario prototype, some items which are not

represented by the target scenario are lost. In addition, it is also often necessary to generate

unspecified parameters as default values in a target scenario prototype.

4.4.1 Transitional Prototype to ModSAF Scenario Prototype To make a file which ModS AF

can read after remapping from a TP, it could be accomplished by a function fitting the data

structure of ModSAF scenario file. I think the best approach to create the ModSAF target file is

to use a routine which ModSAF provides. It is necessary to map into a Persistent Object (PO)

database for saving as a scenario of ModSAF. Since much information about Semi-Autonomous

Forces (SAF) behavior cannot be shared via the DIS protocol, the PO protocol was created to

provide a more flexible and scaleable interface between the components of the SAF system. The

PO protocol enables the sharing of behavioral states, command and control information, and

system administration. ModSAF software modules have unlimited access to all the information

being broadcast via this protocol, provided they are running on the same PO 'database ID.' The

database ID is an identifier in the PO PDU Header that identifies with which repository of

persistent objects or 'database' the application interacts.

4-10

ModSAF program provides a function 'po_create_object()' which creates an entity in the

PO database. We use the function to build of each ModSAF class. Ten of 21 (see section 4.3.1)

ModSAF classes are involved when remapping to a ModSAF scenario file. Among these, the

Unit Class has the most important role. This class stores the general data of an entity. The

matching items from the TP are 'overlaylD,' 'forcelD,' 'objectType,' 'marking,' 'location,'

'direction,1 'speed,' and 'munition' of the Unit Class (see Figure 4.3). The ModSAF overlaylD is

mapped from the TP Entity ID, and the ModSAF objectType is converted from the data that is

saved in DIS format to an integer type variable through a ModSAF utility function.

The marking in the Unit Class is copied from the TP entity name. Getting the ModSAF

location value requires a routine to convert the DIS format data in the TP into ModSAF terrain

database. Direction, speed, and munition in the Unit Class are passed in the same way as

ModSAF location data. Translating the TP task into each ModSAF Task class is required to map

related data using the TP Task Type module. After accomplishing this, we build the

PO_database.

4.4.2 Transitional Prototype to EADSIM Scenario Prototype In section 2.4.2.2, we mentioned

that EADSIM uses two files to build a scenario. Here we describe the process of mapping from

each TP entity to the EADSIM scenario prototype. The laydown file name is contained in the

scenario data structure. This file contains the platform data of each EADSIM entity.

The EADSIM program allows several laydown files in a single scenario; however, the

SFT uses only one laydown file to save all entities in the TP. Since this file has all the

information of a scenario, we only need to open this one file when we want to see what entities are

in the scenario. The EADSIM Military ID of an entity is same as the TP Entity Name. The

EADSIM System ID can be obtained using the TP Entity Type. The Sensor Name and the

Jammer Name in the EADSIM prototype are also derived from the TP. The TP did not provide

EADSIM Way Point directly; however, we can derive the data from the TP task type. If an entity

4-11

has a task, a route which the entity should follow is stored in the TP. The Way Point can be built

using these route data.

4.4.3 Transitional Prototype to BA TTLESIM Scenario Prototype A BATTLESIM scenario

prototype contains a Header Part and an Entity Part. The data needed to map to the Header Part

is the Icon Definition part. For determining these icon definition records, it is necessary to

describe the Header Part after extracting the kinds of entities which are stored in Entity Part. The

BATTLESIM entity object type determines the icon number which matches with the TP Entity

Type. The TP Entity ID determines the BATTLESIM object ID. The BATTLESIM coordinates

are found using both the TP location and minimum/maximum coordinates as described in the

Header Part.

The BATTLESIM Velocity and Orientation are derived from the TP velocity and the

orientation. The sensor name and the defensive system are recognized by the Sensor ID and the

Jammer ID, respectively. Finally, the armament of an entity can be derived from the TP's

munition type.

The next three figures represent the transitional prototype how its data is mapped into

each target scenario prototype. The size of each box is not intended to represent the actual file

size.

4-12

ModSAF Class

Legend

Direct Copy
Floating Point
Conversion

Derived

Transitional Prototype

Legend

Filled

Unfilled

Figure 4.3 Remapping to a Transitional ModSAF Prototype

4-13

EADSIM Transitional Prototype

Scenario File

Laydown File Names

Legend J
Direct Copy
Floating Point
Conversion

Derived

FnrcPi TD

Entity Namfi
Domain

Country
Catftgnry
Snhratftgnry
Specific
T-nr.atinn Y

Location Y

Velocity X

Legend

Heade:

Type

Loc.

Vel.

Orien.

Muni.

Sensor
lammei

Task

Filled

Unfilled

Figure 4.4 Remapping to a Transitional EADSIM Prototype

4-14

BATTLESIM Transitional Prototype

Icon Name

Object Type

Object ID

Coordinates

Velocity

Yaw rate

Pitch rate

Roll rate

Route Points

Sensor Name

Armament

Defensive

Legend

Direct Copy
Floating Point
Conversion

Devised

Entity ID

Force TD
Fntify Nams

Domain

Country
Category
SnhCafpignry

Specific.
Location Y

Location Y

T .oration 7

Velocity X

Velocity Y

Velocity 7

PsL
Theta,

jehL
Domain

Country
Category
SubCategory

Specific
Amount

Sensor TD
Jammer ID

Task Type

Legend

Heade r

Type

Loc.

Vel.

Orien.

Muni.

Sensor
lammei

Task

Filled

Unfilled

Figure 4.5 Remapping to a Transitional BATTLESIM Prototype

4-15

4.5 Saving a Transitional Prototype as a Target Scenario

The last phase of translating a source scenario to a target scenario is to write the remapped target

prototype as a target scenario that a target simulation can read.

4.5.1 Saving as a ModSAFScenario Since a PO_database is created in the process of

mapping into the transitional ModSAF prototype, the task of saving the PO_database into an

actual file is very simple. We use a function provided by the ModSAF program. When using the

function, all the data in POdatabase are stored into a user defined file name.

4.5.2 Saving as an EADSIMScenario The first thing to do is to save a scenario file which ah

EADSIM can read from transitional EADSIM prototype. At this time, there is nothing to get

from the transitional EADSIM prototype. Only the laydown file name is designated by user input

and all information of a scenario is stored here. Several different file paths are stored in the

EADSIM scenario file, and the directory path that is running the EADSIM is also needed.

Because typing in the directory path whenever the Scenario File Translator is running is

inefficient, we store the EADSIM running directory path in a files. This makes the SFT run more

efficiently. The laydown file that stores the information of an entity is written to a text file fitting

the transitional EADSIM prototype. The transitional EADSIM Laydown prototype can be saved

in a straightforward manner since it is designed the same as the data structure of the laydown file.

4.5.3 Saving as a BATTLESIMScenario To save a transitional BATTLESIM prototype data

structure, we simply write the items in the structure to disk sequentially. Because there is no way

to determine the terrain filename or the data about BATTLESIM section, thus, the user must

provide the values when the file is saved.

4.5.4 Saving as a Transitional File Sometimes it is necessary to save the Transitional

Prototype itself for further uses after mapping the source scenario to the TP. This is also

efficient when testing a scenario in several other simulations since the SFT just needs to read a

source scenario one time. Once the SFT reads a source scenario converts it, and saves it as a TP,

4-16

there is no need to re-read and remap the scenario for testing with other simulations. Just reading

the Transitional File is enough to convert the source scenario to a target scenario. Saving as a

Transitional File means to write the items that have been mapped to the TP in the format of

Transitional Prototype. The SFT saves the TP to a text format. The user can easily understand

the data since the SFT also writes some comments in the file.

4.6 User Interface

This section presents the result of the SFT user interface. The SFT provides two interfaces; GUI

and Command Line Interface (CLI). Basically the CLI is provided to every machine even in the

places where the GUI is also available.

4.6.1 Graphics User Interface (GUI) Figure 4.6 is a picture of the SFT main window. The

row of menus at the top of the window (New, Run, Quit, and Help) allows immediate access to

several functions. A selection of the 'New' button initializes the SFT. The 'Run' button causes

the SFT to translate a source scenario to a user-defined target scenario according to the current

settings. If a necessary value is omitted, the SFT displays an error message. The 'Quit' button

terminates the program, and the 'Help' button displays program-specific information to the user.

The rest of the main window is called a scenario selection area. It is divided into two

areas: the source scenario area and the target scenario area. Both sides have same purpose,

namely, to select a scenario type and a scenario file name.

4-17

Scenario File Translator D
New Run Quit Help

Source Simulation

® ModSAF o BATTLESIM

o EADSIM o Trans. File

File Browse

FileName:

Target Simulation

O ModSAF O BATTLESIM

® EADSIM O Trans. File

File Browse
'JJJJJJJJJJIJJWJJJWWJJJIUJJJJ^

Figure 4.6 The Main Window of the SFT

4-18

The scenario selection area allows the user to choose the source/target simulation. The user can

type a directory path and a file name in the 'FileName' display area or can use 'File Browse'

button to search the directory structure for a file name. Error messages, warning messages, or

processing messages are displayed in one of several different types of windows.

4.6.2 Command Line Interface A command line interface is also supported by the SFT for

when the Motif library is not available. To use this interface, the user types the kind of a

source/target simulation and the name of a source/target scenario file. The SFT then builds the

target scenario file which the user defined. This interface has a validating function so it filters

errant inputs. Appendix C shows the usage of SFT Command Line Interface.

4.7 Summary

This chapter described how the Scenario File Translator system is implemented. The SFT

has five subsystems: the loading system, the mapping system, the remapping system, the saving

system, and the user interface system. Actual data structures and methods for implementing the

program followed the design specification. The next chapter presents the results of this system

and offers suggestions for future work.

4-19

V. Results

5.1 Introduction

This chapter discusses the approach taken to ensure that the system, as implemented, fulfills

the original requirements. Several cases are tested and the results are illustrated using a

series of pictures taken within the SFT. This chapter also describes my observations of the

test results.

5.2 The Scenario File Translator Test Cases

There are nine different test cases represented in the SFT. They are referred to as Test 1

through Test 9. Each test case represents a different type of conversion. This section shows

what a source scenario looks like in a source simulation and not its translated scenario as

represented in the target simulation.

5.2.1 Test 1 : ModSAF to EADSIM Figure 5.1 is a picture of a ModS AF simulation

produced by ModSAF itself. It has 18 entities, and each entity has a different task. This

scenario is used for Test 1, Test 2, and Test 3. Figure 5.2 shows the ModSAF scenario after

EADSIM scenario and executed by EADSIM. It also has 18 entities which is the same as the

number of entities in the ModSAF. Additionally, every entity location is the same as the one

in the ModSAF, and every task for the ModSAF entities is also properly converted to the

EADSIM scenario.

5.2.2 Test 2 : ModSAF to BATTLESIM Since the ModSAF scenario is already converted

to the Translated File in the Test 1, there is no need to read the ModSAF scenario again.

After converting the Transitional File to the BATTLESIM format, it also has 18 entities.

5-1

Once again, everything in the ModSAF scenario was properly translated to the BATTLESIM

scenario.

5.2.3 Test 3 : ModSAF to ModSAF It is interesting to "convert" the ModSAF scenario to a

ModSAF scenario after mapping it to the Transitional File, since the comparison between two

scenarios demonstrates the fidelity of the conversion, showing clearly what is and is not

mapped. Figure 5.3 shows a translated scenario from a ModSAF source scenario to a

ModSAF target scenario. Notice, there are no changes between Figure 5.1 and Figure 5.3.

The basic elements of the scenario are well translated with lost data during the mapping

process restored by proper default values.

5.2.4 Test 4 : EADSIM to ModSAF Figure 5.4 is a snapshot of an EADSIM scenario. It

has 10 entities, and each entity has a different flight path and mission. This particular

EADSIM scenario is used for Test 4, Test 5, and Test 6. Figure 5.5 is a picture of a

ModSAF simulation executing a converted scenario from the EADSIM by the SFT. Some

entities which are not represented in ModSAF (such as an EADSIM 'Air Base') are translated

into the 'unknown' entity.

5.2.5 Test 5 : EADSIM to BATTLESIM The number of entities in the BATTLESIM is

the same as the number of entities in the EADSIM even after converting the scenario. Each

BATTLESIM entity has the same route with an EADSIM entity route to perform the mission

in the EADSIM source scenario.

5-2

5.2.6 Test 6 : EADSIMto EADSIM I also tested converting an EADSIM scenario to an

EADSIM scenario through the Transitional File. Figure 5.6 shows the playback of the target

scenario after its conversion by the SFT. There are no changes between Figure 5.4 and

Figure 5.6 similar to that of Test 3, ModSAF to ModSAF. The result scenario file has just

one laydown file. It successfully combined several laydown files into one laydown file.

5.2.7 Test 7: BATTLESIM to ModSAF Figure 5.7 depicts ModSAF scenario as it

executes the scenario after being converted from BATTLESIM by the SFT. BATTLESIM

source scenario has 9 entities, and each entity has a different path. ModSAF shows each

entity has its origin path and proper mission fitting the ModSAF task.

5.2.8 Test 8 : BA TTLESIM to EADSIM Figure 5.8 shows a snapshot of a simulation run

by EADSIM. There is the same number of entities in the BATTLESIM, and every entity

location in the BATTLESIM is well translated into an EADSIM location. The entity path in

BATTLESIM is also transferred into EADSIM, so every entity which has a path goes through

with the translated path.

5.2.9 Test 9 : BATTLESIM to BATTLESIM I compared file format and file size after

translating the original BATTLESIM scenario to the translated BATTLESIM scenario.

Actually there are no differences between them. So, translating BATTLESIM scenario into

another scenario has successfully worked.

5-3

5.4 Observation

We tested each possible case with our three simulations. The tests are demanding, because in

each case the source scenario I produced most of its special purpose features. Thus, I could

also test the interoperability between heterogeneous simulations.

According to these tests, we can make the following observations:

• Every entity type in a source scenario was completely translated into a target scenario.

• Every location in a source scenario is converted as the same position in a target scenario.

• The task definition in the TP covered every scenario's task type.

• The choice to use the DIS format data for Transitional Prototype (TP) such as entity type,

entity location, entity velocity, entity orientation and entity munition type was a good

decision.

• It was shown that using the intermediate format to correct a source scenario to a target

scenario is a better method than a direct mapping. Assume there are currently N

simulations. In case of a direct mapping method, N*(N-1) =N2 -N routines are needed;

however, only 2*N routines are needed with using an intermediate format.

Based on these observations, the general objectives which are defined in Chapter Three are

accomplished.

5.5 Summary

This chapter discussed the top-level of the SFT organization, and the test results. It also

provided the observation of these test cases for converting a scenario to a target scenario.

The next chapter formulates some conclusions and provides some recommendations for future

work.

5-4

jgi£g Mmmm%@gmm

Figure 5.1 A Source Scenario ofModSAF

'..■'.•.■'.•'.•'.■'.•'.-'.-'.'.-'/.■ ■.■!■.. ":•;•:

ß:jl»P§ll|ll

H Sccn'.Hn PJuybflcK - o^nnt/flnRCK„Ht"l.lCO>'"li

m

*

Figure 5.2 A Converted EADSIM Scenario from ModSAF

5-5

,...„..
iyXv'X<->i-i-X->Xw^wÄwyVw^'Avw^>r'Lf'v-

H
:,''*^V':''"::: ~ !''':':'l':Tl'l i L'I UJ L'i/l'ii'l'l'l' I'I *":'-'-'/:'Al:':':':' • ''fliYi'i'i 'l'f :*f l't'i't' l'f'f:

* li

i' :
^?vvvJyvrtviwi4CWwywWTWww

<<• Si *™^^~.S;.....; -4~~ ,.:L i •:■!
ix*.;**«^«.^^*^;«^^

Lr- ► «I

Figure 5.3 A Converted ModSAF Scenario from ModSAF

'S*"?

BW^:

£':

life:* :A::|;:illS:::'::::l;:v;

msmm0mzw*®%%&

Figure 5.4 A Source Scenario ofEADSIM

5-6

TO;

F/gare 5.5 A Converted ModSAF Scenario from EADSIM

Figure 5.6 A Converted EADSIM Scenario from EADSIM

5-7

llilp

tart
II lg»l

F/gwre 5.7 4 Converted ModSAF Scenario from BATTLESIM

Figure 5.8 A Converted EADSIM Scenario from BATTLESIM

5-8

VI. Thesis Summary

6.1 Introduction

The effectiveness of computer simulation in the military is especially apparent, since real

combat conditions are often costly to create for testing some scenarios. There now exists a

variety of scenario generation and analysis products which have differing purposes and

functions. Due to the particular purpose of each simulation, we cannot use one scenario of a

simulation directly with another simulation without a translator since there is no standard

scenario format. Interoperability between simulations is becoming more important in large

scale simulation and distributed exercises. Translating scenarios to support interoperability is

a useful process. I chose to remap to a target simulation after mapping into an intermediate

prototype. This is more efficient because it is not dependent on the number of existing

simulations. I proposed the transitional prototype as an intermediate format, and also

developed the software tool (Scenario File Translator) that aids in the translation of scenario

file formats with this transitional prototype so that scenarios developed by different

simulations can be run by each other. After some test cases with the SFT, this scenario

translating work has been achieved.

6.2 Recommendations for Future Work

There are several approaches for follow-on work in the SFT. One of the biggest areas of

concern in the system is how the definition of the Transitional Prototype (TP) can be made

more general. The prototype that covers all of the information of all simulation is the ideal

format for this work. Table 6.1 is a snapshot of the work proposed in this chapter. Each of

the primary system components - transitional prototype, DIS PDU, compatibility, and

machine independence - is a candidate for future work.

6-1

6.2.1 Transitional Prototype As mentioned in Section 3.4.3, a set of information which

covers all data for all simulations is the ideal format for the TP. However, this is not

practical, and therefore we might focus on improving the data structures and the data formats

in the TP as the best way to cover every simulations' scenario. As the TP data structure is

generalized it will provide program for greater reusability and extensibility. A more detailed

definition of the task type allows the target scenario to inherit the special purpose of a source

scenario. We can also enhance the mapping process for more accurate translation. Since the

more we map to the TP the more we extend the common area between simulations, even a

small piece of data is important. Since the most widely-used default values are used when

there is no represented data to a target scenario for mapping, finding a correct value for those

data is another important process to increase the conversion percentage between two

simulations.

6.2.2 DISPDU Since most distributed simulations support DIS, grabbing the PDU from

the network and building a state of the battlefield provides another advantage. Even if the

mapping procedure of a simulation is not built, we can extract the current state of a scenario

and can save it as the Transitional File which can be used by another simulation. The best

PDU to determine the current state of a scenario is the 'Entity State PDU' (see Table 2.1).

The PDU has information of each entity such as entity type, velocity, and location. Using the

PDU we can rebuild a scenario which contains all the simulations on the network. Of course,

we can select some specific PDUs by 'Exercise ID' in PDU Header. However, since DIS

PDUs send current events over the network, it is not possible to determine the task of an

6-2

Table 6.1 Proposed Future Work

Functional Area Proposed Work
Transitional Prototype Improving data structure and data format

Extend the type of task
Enhance accuracy of mapping process
Correct inserting for default values

DIS PDU Develop DIS "Entity State PDU" snapshot function
Select specific PDU with Exercise ID in PDU Header
Changing TP to DIS PDU
Send converted DIS PDU from TP via network
Receive other DIS PDUs relating the TP

Machine Independence Provide 'Makefile' to compile on any machine
Analyze the computer system to allocate optimized memory size
Enhance stability and extensibility

Compatibility Accommodate other prototype
Transfigure to other format
Accompany with DIS PDU

entity as described in Section 3.2.1.1. As DIS PDU is more well developed we can alleviate

this problem. Conversely, we can build a procedure which changes a TP to PDUs because the

TP already uses the DIS format. That is another benefit since we can send the TP via the

network through the DIS PDU, providing for program extensibility.

6.2.3 Machine Independence It is desirable for the SFT to run on any machine to support

many currently-existing simulations. Of course, there is a way to translate a scenario on one

type of machine to a target scenario on another type of machine. When the scenarios are

transferred to the machine which has the SFT, a target scenario can be made and can be sent

to the machine which uses the target scenario. However, it depends on the network state. For

more stable support, it is necessary to compile on any machine. The flexible and

comprehensive 'Makefile' supports this.

6-3

6.2.4 Compatibility I chose DIS format to save some scenario data such as entity type,

entity location, and munition type. If a more well-defined format to send a current state of a

scenario is developed, or if there is another format to describe data of scenarios, compatibility

with these formats extends the usability of the SFT.

6.2.5 Memory Size In the current program, all data of the source/target scenario and TP

are stored in computer memory. The required memory size is described in Section 4.2. The

potential problem is an out-of-memory exception. Memory size is not a big problem in this

area since we can increase computer memory relatively inexpensively. However, we need to

consider the possibility that the memory is not sufficient to store the whole data of a scenario

which has a hundred thousand entities, or a million entities, or a billion entities in extreme

cases. Of course, there are several techniques to solve this problem. The more we minimize

the required memory size, the more the SFT is stable. One of the ways to minimize the

required memory size is to optimize the TP data structure. When we determine the best size

of each variable, we can reduce the TP memory size. When the memory is not enough even

after optimizing the data structure, another way is to use a hard disk drive to temporarily save

current state of the TP.

6.3 Conclusion

This thesis effort produces a system which translates scenarios of one format to scenarios of a

different format in order to increase interoperability between simulations. Although this

thesis effort concentrated on three specific simulations ModSAF, EADSIM and

BATTLESIM, this work can also be applied to other simulations, and that task is simplified

by the TP.

6-4

Appendix A. Transitional Scenario File Prototype

A.1 ModSAF

Table A. 1 ModSAF Transitional Prototype

Type Variable Name Remark
PO FILE HDR * ms hdr structure pointer
PO FILE ENTRY ms fe array size: [OxFFFFFl
void* ms class address pointer

PO_FILE_HDR, PO_FILE_ENTRY : refer to ModSAF source code 'p_po.h'

A.2 EADSIM

A.2.1 EADSIM Scenario File

Table A.2 EADSIM 'Scenario File' Transitional Prototype

JSEL Variable Name Remark
es header*
eslaydownfile *
es_elementmap'
es networkfile *
es zerothrumaxhost *
esunusedstring!

es degug;

es host *
es maxfilec3ioutput *
es truth*
esspds ;

es log '■
es stat *
es_pstat:

es file *
es earthradadj
es hzululocal *
esdisplaythruroute *
es formatthrustarting'
es process'
es write *
es c3ilog '■
esimage !

es transradfilepath *
es time *
es external *
es tiV

ES HeaderAddr
ES LaydownFileAddr
ES ElementMapAddr
ES NetworkfileAddr
ES ZeroThruMaxHostAddr
ESUnusedStringAddr
ES DebugAddr
ES HostAddr
ES_MaxFileC3IOutputAddr
ES TruthAddr
ES SPDSAddr
ES LogAddr
ES StatAddr
ES PStatAddr
ES FileAddr
ESJEarthRadAdjAddr
ES HZuluLocalAddr
ES DisplayThruRouteAddr
ES FormatThruStartingAddr
ES ProcessAddr
ES WriteAddr
ES C3ILogAddr
ES ImageAddr
ES TransRadFilePathAddr
ES TimeAddr
ES ExternalAddr
ES TBAddr

structure pointer
structure pointer
structure pointer
structure pointer
structure pointer
structure pointer
structure pointer
structure pointer
structure pointer
structure pointer
structure pointer
structure pointer
structure pointer
structure pointer
structure pointer
structure pointer
structure pointer
structure pointer
structure pointer
structure pointer
structure pointer
structure pointer
structure pointer
structure pointer
structure pointer
structure pointer
structure pointer

A-l

Table A.3 EADSIM 'es filename' data structure

Type Variable Name Remark
char FileName string size: 79
es filename * NextFileNameAddr structure pointer

Table A.4 EADSIM 'es header' data structure

JiES_
char
char
mt
int
int
unsigned long int

Variable Name
Version
Title
StartTime
EndTime
Interval
MaxDuration

Remark
string size: 79
string size: 79

Table A.5 EADSIM 'esjaydownflle' data structure

Type Variable Name Remark
int NumLaydowns
es filename * NextFileNameAddr structure pointer

Table A.6 EADSIM 'eselementmap' data structure

Type Variable Name Remark
char ElementPath string size: 79
char MapPath string size : 79

Table A.7 EADSIM 'es networkfile' data structure

Type Variable Name Remark
int NumNetworkFile string size: 79
es filename * NextFileNameAddr structure pointer

A-2

Table A. 8 EADSIM 'es zerothrumaxhost' data structure

Type
unsigned char
char
unsigned char
unsigned char
unsigned char

Variable Name
Zero
AOIPath
HOSTILE SEE HOSTILE
FRIENDLY SEE FRIENDLY
MAX HOST

Remark
value: 0
stringsize: 79
boolean
boolean
value: 8

Table A.9 EADSIM 'esunusedstring' data structure

Type Variable Name Remark
char UnusedStringO string size: 79
char UnusedStringl string size: 79
char UnusedString2 string size: 79
char UnusedString3 string size: 79
char UnusedString4 string size: 79
char UnusedString5 string size: 79
char UnusedString6 string size: 79
char UnusedString7 string size: 79

Table A. 10 EADSIM 'es_debug' data structure

Type Variable Name Remark
int Debug FP
int Debug C3I
int Debug DET
int Debug PROP
int Debug GRF
int Debug NAM
int Debug ALSP
int Debug TB

A-3

Table A. 11 EADSIM 'es host' data structure

Type Variable Name Remark
char Host FP string size: 79
char Host C3I string size: 79
char Host DET string size: 79
char Host PROP string size: 79
char Host GRF string size: 79
char Host NAM string size : 79
char Host ALSP string size: 79
char Host TB string size: 79

Table A. 12 EADSIM 'es_maxfilec3ioutput' data structure

Type Variable Name Remark
unsigned char MAX FILE value: 40
char C3IOutputPath string size : 79

Table A. 13 EADSIM 'es truth' data structure

Type Variable Name Remark
char C3ITruthFile string size : 79
char FPTruthFile string size: 79
char PropagationTruthFile string size: 79
char DetectionTruthFile string size: 79

Table A. 14 EADSIM 'es_spds' data structure

Type Variable Name Remark
char C3ISPDSFile string size: 79
char DetectionSPDSFile string size: 79

A-4

Table A. 15 EADSIM 'esjog' data structure

Type Variable Name Remark
char C3ILOGFile string size: 79
char FPLOGFile string size: 79
char PropagationLOGFile string size: 79
char DetectionLOGFile string size: 79

Table A. 16 EADSIM 'es stat' data structure

Type Variable Name Remark
char C3ISTATFile string size: 79
char FPSTATFile string size: 79
char PropagationSTATFile siring size: 79

Table A. 17 EADSIM 'es_pstat' data structure

Type Variable Name Remark
char C3IPSTATFile string size : 79
char DetectionPSTATFile string size: 79
char FPPSTATFile string size: 79
char PropagationPSTATFile string size : 79

A-5

Table A. 18 EADSIM 'es file' data structure

Type Variable Name Remark
char TMESLOTFile string size: 79
char MSGDATAFile string size: 79
char C3IENGSTATFile string size: 79
char C3ICOMMSTATFile string size: 79
char C3ITRACKSTATFile string size: 79
char FPSTATHEADERFile string size: 79
char COMMREQFile string size: 79
char CONSTATFile string size: 79
char ASSETFile string size : 79
char DetectionSTATFile string size: 79
char DetectionDEBUGFile string size: 79
char MEZFile string size: 79
char FPOutputPath string size: 79
char DetectionOutputPath string size : 79
char PropagationOutputPath string size: 79
char C3ITNTELSTATFile string size: 79
char C3IBASESTATFile string size: 79
char C3IIFFSTATFile string size: 79
char FPEVENTFile string size : 79
char C3IJAMSTATFile string size: 79
char PREFLYTBMFile string size: 79
char C3JRSRCSTATTile string size: 79

Table A. 19 EADSIM 'esearthradadj' data structure

Type Variable Name Remark
float RadarEarthRadAdj
float SiglntEarthRadAdj
float HumlntEarthRadAdj
float ImintEarthRadAdj
float IRLEarthRadAdj
float IREEarthRadAdj

Table A.20 EADSIM 'es hzululocal' data structure

Type Variable Name Remark
int HStart
int Zulustart
int LocalStart

A-6

Table A.21 EADSIM 'es_displaythruroute' data structure

Type
char
char
char
char

Variable Name
DisplayPreFile
ColorPreFile
LLTRFile
RouteFile

Remark
string size: 79
string size: 79
string size: 79
string size : 79

Table A.22 EADSIM 'esformatthrustarting' data structure

Type Variable Name Remark
int FormatSPDS
int JammerOnTime Not used
int FractionPropUpdate
int Socket MAXSOCKET
int TotalRuns
int RunsToMake
int StartingRun

Table A.23 EADSIM 'es_process' data structure

Type Variable Name Remark
unsigned char FP PROCESS boolean
unsigned char C3I PROCESS boolean
unsigned char DET PROCESS boolean
unsigned char PROP PROCESS boolean
unsigned char SGEN PROCESS boolean
unsigned char NAM PROCESS boolean
unsigned char ALSP PROCESS boolean
unsigned char DIS PROCESS boolean
unsigned char TB PROCESS boolean
unsigned char SEEDFROMPREVIOUS boolean

A-7

Table A.24 EADSIM 'es write' data structure

Type Variable Name Remark
unsigned char WRITE PROP LOG boolean
unsigned char WRITE PROP STAT boolean
unsigned char WRITE PROP PSTAT boolean
unsigned char WRITE DET SPDS boolean
unsigned char WRITE LOG boolean
unsigned char WRITE DET STAT boolean
unsigned char WRITE DET PSTAT boolean
unsigned char WRITE DET DEBUG boolean
unsigned char WRITE C3I LOG boolean
unsigned char WRITE C3I PSTAT boolean
unsigned char WRITE ENGSTAT boolean
unsigned char WRITE IFFSTAT boolean
unsigned char WRITE COMMSTAT boolean
unsigned char WRITE TRACKSTAT boolean
unsigned char WRITE INTELSTAT boolean
unsigned char WRITE BASESTAT boolean
unsigned char WRITE JAMSTAT boolean
unsigned char WRITE PSRCSTAT boolean
unsigned char WRITE TRUTH boolean: TRUE
unsigned char WRITE FP LOG boolean
unsigned char WRITE FP PSTAT boolean
unsigned char WRITE STATHDR boolean: TRUE

Table A.25 EADSIM 'es_c3ilog' data structure

Type Variable Name Remark
unsigned char WRITE FPEVENTS boolean
unsigned char C3ILog PLAT STATUS boolean
unsigned char C3ILog MSG CONFIRM boolean
unsigned char C3ELog PHASE STATS boolean
unsigned char C3ILog UTIL STATS boolean
unsigned char C3ILog MSG HANDLER boolean
unsigned char C3ILog TRACK HANDL boolean
unsigned char C3ILog ENG EVENTS boolean
unsigned char C3ILog SPDS INFO boolean
unsigned char C3ILog MISL DETECT boolean
unsigned char C3ILog COMM CHECKS boolean
unsigned char C3ILog IFF MSGS boolean
unsigned char C3ILOR RSRC EVENTS boolean
unsigned char C3ILog SENSOR MAN boolean
unsigned char LOG ALL NET STATS boolean
float NetStatsInterval boolean

A-8

Table A.26 EADSIM 'es_image' data structure

Type Variable Name Remark
unsigned char DTED IMAGE
unsigned char ADRG IMAGE
unsigned char NO IMAGE
unsigned char ADRGMapImageType 1: Overview 3 : Map Image
float ADRGMapNLat
float ADRGMapSLat
float ADRGMapWLon
float ADRGMapELon
unsigned char ADRG USE CDROM ASPECT
unsigned char ADRGImageSource l:Read from file 2:from CDROM
char ADRGImagePath string size: 79

Table A.27 EADSIM 'estransradfilepath' data structure

Type Variable Name Remark
char TransmissionFilePath string size: 79
char RadianceFilePath string size: 79

Table A.28 EADSIM 'es defaultsentime' data structure

Type Variable Name Remark
int DefaultSenOnTime
int DefaultSenOflTime
es defaultsentime * ES NextDefaultSenTimeAddr structure pointer

Table A.29 EADSIM 'es_defaultjamtime' data structure

Type Variable Name Remark
int DefaultfamOnTime
int DefaultJamOflTime
es defaultjamtime * ES NextDefaultJamTimeAddr structure pointer

A-9

Table A.30 EADSIM 'es totalruns' data structure

Type Variable Name Remark
unsigned int RSeedC3I
unsigned int RSeedDetect
es totalruns * ES NextTotalRunsAddr structure pointer

Table A.31 EADSIM'es time'data structure

Type Variable Name Remark
unsigned int NumGlobalSensorTime
es defaultsentime * ES NextDefaultSenTimeAddr structure pointer
unsigned int NumGlobalJammerTimes
es defauUjamtime * ES NextDefaulÜamTimeAddr structure pointer
es totalruns * ES NextTotalRunsAddr structure pointer

Table A.32 EADSIM 'es external' data structure

Type Variable Name Remark
unsigned int ALSPAddress ConfedE)
unsigned int ALSPAddress ActorlD
char ALSPAddress ACMHostName string size : 79
unsigned int DISAddress Site
unsigned int DISAddress Host
int BCastlnPort
int BCastOutPort
char Netlnterface string size: 25
int ExerciseK)
float AirTimeOut
float GndTimeOut
double AirThreshold
double GndThreshold
unsigned char MSL LAUNCH PROCESS

A-10

Table A.33 EADSIM 'es tb' data structure

Type Variable Name Remark
char TBAddress HostMachine string size: 25
char TBAddress ExePath string size: 254
char TBAddress OutPath string size: 254
char TBAddress DataPath string size: 254
char TBAddress CmdLine string size : 1024
unsigned int TBAddress Site
unsigned int TBAddress Host
unsigned char EXT REAL TIME
unsigned char TIME REGULATING
unsigned char TIME CONSTRAINED
unsigned char START TB
unsigned char PREFLYTBM
float EMCONLat
float EMCONLon

A.2.2 EADSIMLaydown File

Table A.34 EADSIM 'esjay' data structure

Type Variable Name Remark
char Version string size: 25
int NumPlatforms
es layplatform * ES NextLayPlatformAddr structure pointer

A-ll

Table A.35 EADSIM 'esjayplatform' data structure

Type Variable Name Remark
char MilID string size: 25
char SystemE) string size: 25
char Commandern) string size: 25
int Colorlndex
es laysensor * ES NextLaySensorAddr structure pointer
int NumComDevs
es laycomdev * ES NextLayComDevAddr structure pointer
es layjammer * ES NextLayJammerAddr structure pointer
int NumAssets
es layasset * ES NextLayAssetAddr structure pointer
int NumTargets
es laytarget * ES NextLayTargetAddr structure pointer
int NumlFTUPlatforms
es layiftuplatform * ES NextLaylFTUPlatformAddr structure pointer
unsigned char SIM boolean
unsigned char HHOUR boolean
unsigned char LOCAL boolean
unsigned char ZULU boolean
unsigned char HM NO DELIM boolean
unsigned char HMS boolean
unsigned char AS ENTERED boolean
char TimeSuflöx string size: 25
unsigned char LOG TRACK EVENT
unsigned char LASER ABSOLUTE
float LaserRestAz
float LaserRestEl
unsigned char PlatformType
es layplatformsatellite * ES LayPlatformSatelliteAddr structure pointer
unsigned char UseRouteData boolean
us_layuseroutedata * ES LayUseRouteDataAddr structure pointer
us laynotuseroutedata * ES LayNotUseRouteDataAddr structure pointer
int NumPTLs
es layptl * ES NextLayPTLAddr structure pointer
int NumLCS
esjaymilid * ES NextLayLCSAddr structure pointer
int NumDecoys
es laymilid * ES NextLayDecoyAddr structure pointer
int NumSurvPlat
es laymilid * ES NextLaySurvAddr structure pointer
unsigned char CMData boolean
unsigned char EMCOM DEFAULT boolean
int EMCOMAuthority
es layplatformaircraft * ES_LayPlatformAircraft
unsigned char AIRBASE boolean
es_layplatformairbase * ES LayPlatformAirBaseAddr structure pointer
es layplatform * ES NextLayPlatformAddr structure pointer

A-12

Table A.36 EADSIM 'es_laysensor' data structure

Type Variable Name Remark
int NumSensors
es laysensorheader * ES NextiaySensorHeaderAddr structure pointer
int NumTimings
int NumTimes
esjaytime * ES NexÜayTimeAddr structure pointer

Table A. 3 7 EADSIM 'eslaysensorheader' data structure

Type Variable Name Remark
char Name string size: 25
int AntHeight
float VerAngle
float HorAngle
float Lat
float Lon
float Alt
unsigned char PtMode
float NomFreq
char ToPlatform string size : 25
unsigned char DEFAULT ANTHEIGHT boolean
unsigned char DEFAULT HORANGLE boolean
unsigned char DEFAULT VERANGLE boolean
unsigned char DEFAULT PTMODE boolean
unsigned char DEFAULT TIMING boolean
unsigned char DEFAULT FREQ boolean
int NumSensorPointings
es laypointing * ES NextLayPointingAddr structure pointer
es laysensorheader * ES_NextLaySensorHeaderAddr structure pointer

A-13

Table A.38 EADSIM 'esjaycomdev' data structure

Type Variable Name Remark
char Name string size: 25
int AntHeight
float VerAngle
float HorAngle
float Lat
float Lon
float Alt
unsigned char PtMode
char ToPlatform string size : 25
unsigned char DEFAULT ANTHEIGHT boolean
unsigned char DEFAULT HORANGLE boolean
unsigned char DEFAULT VERANGLE boolean
unsigned char DEFAULT PTMODE boolean
es laycomdev* ES NextLayComDevAddr structure pointer

Table A.39 EADSIM 'eslayjammer' data structure

Type Variable Name Remark
int NumJammers
es_layjammerheader * ES NextlayJammerHeaderAddr structure pointer
int NumTimings
int NumTimes
es laytime * ES_NextlayTimeAddr structure pointer

Table A.40 EADSIM 'eslayjammerheader' data structure

Type Variable Name Remark
char Name string size: 25
int Number Not used
int AntHeight
float VerAngle
float HorAngle
float Lat
float Lon
float Alt
unsigned char PtMode
char ToPlatform string size: 25
unsigned char DEFAULT ANTHEIGHT boolean
unsigned char DEFAULT HORANGLE boolean
unsigned char DEFAULT VERANGLE boolean
unsigned char DEFAULT PTMODE boolean
unsigned char DEFAULT TIMING boolean
int NumJammerPointings
es laypointing* ES NextLayPointingAddr structure pointer
eslayjammerheader * ES NextLayJammerHeaderAddr structure pointer

A-14

Table A.41 EADSIM 'esjayasset' data structure

Type Variable Name Remark
char Name string size: 25
int Priority
float ThreatRangeCEN
float CriticalRangeCEN
float ThreatRangeDECEN
float CriticalRangeDECEN
float DownRangeCEN
float CrossRangeCEN
float DownRangeDECEN
float CrossRangeDECEN
unsigned char CEN ABT SELF boolean
unsigned char CEN ABT SUBORD boolean
unsigned char CEN ABT CMDR boolean
unsigned char CEN ABT ASSET boolean
unsigned char CEN ABT SUBSUBORD boolean
unsigned char CEN ABT SUBASSET boolean
unsigned char CEN ABT ZONE boolean
unsigned char DECEN ABT SELF boolean
unsigned char DECEN ABT SUBORD boolean
unsigned char DECEN ABT CMDR boolean
unsigned char DECEN ABT ASSET boolean
unsigned char DECEN ABT SUBSUBORD boolean
unsigned char DECEN ABT SUBASSET boolean
unsigned char DECEN ABT ZONE boolean
unsigned char DEFEND TM boolean
unsigned char CEN TM SELF boolean
unsigned char CEN TM SUBORD boolean
unsigned char CEN TM CMDR boolean
unsigned char CEN TM ASSET boolean
unsigned char CEN TM SUBSUBORD boolean
unsigned char CEN TM SUBASSET boolean
unsigned char CEN TM ZONE boolean
unsigned char DECEN TM SELF boolean
unsigned char DECEN TM SUBORD boolean
unsigned char DECEN TM CMDR boolean
unsigned char DECEN TM ASSET boolean
unsigned char DECEN TM SUBSUBORD boolean
unsigned char DECEN TM SUBASSET boolean
unsigned char DECEN TM ZONE boolean
unsigned char DEFEND ABT boolean
es layasset * ES NextLayAssetAddr structure pointer

A-15

Table A.42 EADSIM 'esjaytarget' data structure

Type Variable Name Remark
char Name string size: 25
int Priority
int LaunchTime
int WPNumber
char Weapon string size: 25
char CaptivePlatform string size: 25
float LauchDelay
unsigned char TARGET REQDETECT boolean
float HOB
esjaytarget * ES NextLayTargetAddr structure pointer

Table A.43 EADSIM 'esjayiftuplatform' data structure

Type Variable Name Remark
char Name string size: 25
es layiftuplatform * ES NextLayffTUPlatformAddr structure pointer

Table A.44 EADSIM 'esjayplatformsatellite' data structure

Type Variable Name Remark
float X
float Y
float Z
float XDot
float YDot
float ZDot
float InitialTime
float InitialLon

A-16

Table A.45 EADSIM 'es_layuseroutedata' data structure

Type Variable Name Remark
char RouteName string size: 25
float ActivationTime
float ActivationTimeDt

Table A.46 EADSIM 'esjaynotuseroutedata' data structure

Type Variable Name Remark
int NumWayPoints
unsigned char WpMode
eslaywaypoint * ES NextLayNURDWayPointAddr structure pointer

Table A.47 EADSIM 'esjayptl' data structure

Type Variable Name Remark
int PTLOnTime
float PTLAzimuth
es layptl * ES NextLayPTLAddr structure pointer

Table A.48 EADSIM 'esjayacfrc' data structure

Type Variable Name Remark
float RefuelAmount
int NumTankers
es laymilid * ES NextLayMillDAddr structure pointer

A-17

Table A.49 EADSIM 'esjaywaypoint' data structure

Type Variable Name Remark
float Lat
float Lon
float Alt
unsigned char Type
char MilID string size: 25
unsigned char TerrainFlag
unsigned char Zmode
float Speed
int OnTime
int OflTime
es laywaypoint * ES NextLayWayPointAddr structure pointer

Table A.50 EADSIM 'esjayart' data structure

Type Variable Name Remark
int NumWayPoints
es laywaypoint * ES NextLayWaypointAddr structure pointer

Table A.51 EADSIM 'eslayplatformaircraft' data structure

Type Variable Name Remark
char FlightLeader string size: 25
char HomeAirbaselD string size: 25
int AlertLevel
unsigned char AtBaseFlag
unsigned char FLIGHT REFILL boolean
int DeactivationTime
unsigned char FLIGHT REFUEL CAPABLE boolean
es layacfrc * ES LayACFRCAddr structure pointer
unsigned char AIRREFUELTANKER boolean
es layart * ES LayACARTAddr structure pointer

A-18

Table A.52 EADSIM 'eslayplatformairbase' data structure

Type Variable Name Remark
float
float
float
float
float

Radius
RunWayArea
TurnArea
C2Area
AC PK

float
int
int
int
int
int
int
int
int
mt
int
int

TOIntervalPenalty
TurnDelay
DelayFirstlmpact
MinTakeOfllnterval
TOPenaltyExp
TBMpriority
DCApriority
GAPpriority
SCPTpriority
MaxTBMReq
MaxDCAReq
MaxGAReq

Table A.53 EADSIM 'esjaymilid' data structure

Type Variable Name Remark
char MilID string size: 25
es laymilid * ES NextLayMillDAddr structure pointer

Table A.54 EADSIM 'esjaytime' data structure

Type Variable Name Remark
int OnTime
int OflTime
eslaytime * ES NextlayTimeAddr structure pointer

A-19

Table A.55 EADSIM 'eslaypointing' data structure

Type Variable Name Remark
char ToPlatform string size: 25
int OnTime
int OflTime
int AntHeight
float VerAngle
float HorAngle
unsigned char PtMode
es laypointing* ES NextLayPointingAddr structure pointer

Table A.56 EADSIM 'eslaynurdwaypoint' data structure

Type Variable Name Remark
float Lat
float Lon
float Alt
unsigned char Type
chat MilID string size: 25
unsigned char TerrainFlag boolean
unsigned char Zmode boolean
float Speed
int OnTime
int OflTime
es laywaypoint * ES NextLayNURDWayPointAddr structure pointer

Table A.57 EADSIM 'esjayaircraftdata' data structure

Type Variable Name Remark
char Name string size: 25
unsigned char Domain Enumeration Type
unsigned int Country Enumeration Type
unsigned char Category Enumeration Type
unsigned char SubCategory Enumeration Type
unsigned char Specific Enumeration Type

A-20

A.3 BATTLESIM

Table A.58 BATTLESIM'bs scenario'data structure

Type Variable Name Remark
BS Header Header structure
bs object * NextObjAddr structure pointer

Table A.59 BATTLESIM 'BS TerrainMinCoord' data structure

Type Variable Name Remark
double xmin
double ymin
double zmin

Table A.60 BATTLESIM 'BS TerrainMaxCoord' data structure

Type Variable Name Remark
double xmax
double ymax
double zmax

Table A61 BATTLESIM'bs sector'data structure

Type Variable Name Remark
double xmin
double ymin
double zmin
double xmax
double ymax
double zmax
bs sector * NextSectorAddr structure pointer

A-21

Table A.62 BATTLESIM 'bs icon' data structure

Type Variable Name Remark
int IconNumber Enumeration Type
char IconName string size: 20
bs icon * NextlconAddr structure pointer

Table A.63 BATTLESIM 'BS Header' data structure

Type Variable Name Remark
char VersionNumber string size: 20
char TerrairiFileName string size: 50
BS TerrainMinCoord TerrainMinCoord structure
BS TerrainMaxCoord TerrainMaxCoord structure
int NumSectors
bs sector* NextSectorAddr structure pointer
int Numlcons
bs icon * NextlconAddr structure pointer

Table A.64 BATTLESIM 'bs_object' data structure

Type Variable Name Remark
BS DescObj DescObj structure
int NumRoutePoints
bs routepoint * NextRoutePoints structure pointer
int NumSensors
bs sensor* NextSensorAddr structure pointer
int NumArmaments
bs armament * NextArmamentAddr structure pointer
int NumTargets
bs target * NextTargetAddr structure pointer
int NumDefensiveSys
bs defensive * NextDefensiveSysAddr structure pointer
bs object * NextObjAddr structure pointer

Table A.65 BATTLESIM 'BS_ObjectLocation' data structure

Type Variable Name Remark
double xcoord
double ycoord
double zcoord

A-22

Table A.66 BATTLESIM 'BS_ObjectVelocity' data structure

Type Variable Name Remark
double xvel
double yvel
double zvel

Table A.67 BATTLESIM 'BS_ObjectOrientation' data structure

double
double

Jipe_ Variable Name
yawrate
pitchrate

Remark

double rollrate

Table A.68 BATTLESIM 'BS_DescObj' data structure

Type Variable Name Remark
int ObjectType Enumeration Type
int ObjectfD
double CurrentTime
BS ObjectLocation ObjectLoc structure
BS ObjectVelocity ObjectVel structure
BS_ObjectOrientation ObjectOri structure
double PlayerSize
double mass
int ObjectLoyalty
int FuelStat
int Condition
int Vulnerability
int Experience
int ThreatKnow
int MinTurnRad
int MaxSpeed
int AvgFuelCons
int MaxClimb

A-23

Table A.69 BATTLESIM 'bs_routepoinf data structure

Type Variable Name Remark
double xcoord
double ycoord
double zcoord
bs routepoint * NextRoutePointAddr structure pointer

Table A.70 BATTLESIM 'bs sensor' data structure

Type Variable Name Remark
int SensorType
int SensorRange
int SensorResolution
bs sensor* NextSensorAddr structure pointer

Table A.71 BATTLESIM 'bs armament' data structure

Type Variable Name Remark
int ArmamentType
int ArmamentRange
int ArmamentYield
int ArmamentAccuracy
int ArmamentSpeed
int ArmamentCount
bs armament * NextArmamentAddr structure pointer

Table A.72 BATTLESIM 'bsjarget' data structure

Type Variable Name Remark
int TargetType
double TargetXCoord
double TargetYCoord
double TargetZCoord
bs target * NextTargetAddr structure pointer

A-24

Table A.73 BATTLESIM 'bs defensive' data structure

Type Variable Name Remark
int DefensiveSysType
int DefensiveSysRange
int DefensiveSysEffect
bs defensive * NextDefensiveSysAddr structure pointer

A.4 Transitional File

Table A. 74 Transitional File 'tf transfile' data structure

Type Variable Name Remark
char Version string size: 25
unsinged long TF NumEntities
tf database * NextDatabaseAddr structure pointer

Table A.75 Transitional File 'tfdatabase' data structure

Type
tf entityheader *
tf_entitytype *
tf entitylocation *
tfentityvelocity *
tfentityorientation'
unsigned char
tf munitiontype !

unsigned char
tf sensorid *
unsigned char
tf jammerid *
unsigned char
tf tasktype
tf database *

Variable Name
TF EntityHeaderAddr
TF EntitytTypeAddr
TFJEntityLocationAddr
TF EntityVelocityAddr
TF EntityOrientaüonAddr
TF NumKindMunitions
NextMunitionAddr
TF NumSensors
NextSensorAddr
TF NumJammers
NextJammerAddr
TF NumTasks
NextTaskAddr
NextDatabaseAddr

Remark
structure pointer
structure pointer
structure pointer
structure pointer
structure pointer

structure pointer

structure pointer

structure pointer

structure pointer
structure pointer

A-25

Table A.76 Transitional File 'tf_point' data structure

Type Variable Name Remark
double LocationX
double LocationY
double LocationZ
tf point * NextPointAddr structure pointer

Table A.77 Transitional File 'tf location' data structure

Type Variable Name Remark
double LocationX
double LocationY
double LocationZ

Table A.78 Transitional File 'tfentityheader' data structure

Type Variable Name Remark
unsigned int Entityld Enumeration Type
unsigned char Forceld Enumeration Type
char EntityName string size: 25

Table A.79 Transitional File 'tfentitytype' data structure

Type Variable Name Remark
unsigned char Domain Enumeration Type
unsigned int Country Enumeration Type
unsigned char Category Enumeration Type
unsigned char SubCategory Enumeration Type
unsigned char Specific Enumeration Type

Table A.80 Transitional File 'tfentityvelocity' data structure

Type Variable Name Remark
float VelocityX
float VelocityY
float VelocityZ

A-26

Table A. 81 Transitional File 'tfentityorientation' data structure

Type Variable Name Remark
float Psi
float Theta
float Phi

Table A. 82 Transitional File 'tf_munitiontype' data structure

Type Variable Name Remark
unsigned char Domain Enumeration Type
unsigned int Country Enumeration Type
unsigned char Category Enumeration Type
unsigned char SubCategory Enumeration Type
unsigned char Specific Enumeration Type
unsigned int Amount
tf munitionrype * NextMunitionAddr structure pointer

Table A.83 Transitional File 'tf sensorid' data structure

Type Variable Name Remark
char SensorlD string size : 25
tf sensorid * NextSensorAddr structure pointer

Table A. 84 Transitional File 'tfjammerid' data structure

Type Variable Name Remark
char JammerlD string size: 25
tfjammerid * NextJammerAddr structure pointer

Table A. 85 Transitional File 'tftasktype' data structure

Type Variable Name Remark
unsigned char TaskType Enumeration Type
void* TaskDataAddr address pointer
tf tasktype * NextTaskAddr structure pointer

A-27

Appendix B. Enumeration Type for Task Type ofTransitional Prototype

B.1 Task Name

Field Value 1-99 : Ground Mission

Field Value 100-149 : Air Mission

100-124: FWA Mission

125 - 149 : RWA Mission

Field Value 150-199 : Surface Mission

Field Value 200-249 : Space Mission

Field Value 250-255 : Extra

Table B. 1 Enumeration Type of Task Name

Field Value Task Kind

0 Others
1 Move
2 Road March
3 Follow a Vehicle
4 Follow Simulator
5 Pursue
6 Hasty Occupy Position
7 Assault
8 Traveling Overwatch
9 Overwatch Movement
10 Withdraw
11 Breach
12 Attack By Fire
13 Concealment
14 Delay
15 Repair
16 Sevice Station
17 Cross-leveling
18 Change Formation
19 Rendezvous

100 FWA Sweep
101 FWA CAP
102 FWA CAS Mission
103 FWA Ingress
104 FWA Attack Ground Target

B-l

105 FWA Egress
106 FWA Return to Base
107 FWA Interdiction Mission
125 RWA Fly Route
126 RWA Hover
127 RWA Orbit
128 RWA Assemble
129 RWA Attack
130 RWA Hasty Occupy Position

B.2 Data Structures for Each Task Type

B.2.1Move

Table B.2 Task 'Move' data structure

Type Variable Name Remark
unsigned char NumPoints Route
tf point * PointAddr
unsigned char TravelType Enumeration Type
unsigned char Formation Enumeration Type
float RateOfMarch
float CatchUpSpeed
float DismountedSpeed
unsigned int FollowingLeader
unsigned int FollowingLeaderDegree
float FollowingLeaderDistance
unsigned char NumPoints LeftBoundary
tf point * PointAddr
unsigned char NumPoints RightBoundary
tf point * PointAddr
unsigned char Spacing Enumeration Type
float UserSpecifiedSpacing
float IFVOffsetX
float IFVOffsetY

B.2.2 Road March

same as Task "Move".

B.2.3 Follow a Vehicle

same as Task "Move".

B-2

B.2.4 Follow Simulator

Table B.3 Task 'Follow Simulator' data structure

Type Variable Name Remark
unsigned char SimulatorToFollow
unsigned char TravelType Enumeration Type
unsigned char Formation Enumeration Type
unsigned char Spacing Enumeration Type
float UserSpecifiedSpacing
float RejoinSimDistance

B.2.5 Pursue

same as Task "Move".

B.2.6 Hasty Occupy Position

Table B.4 Task 'Hasty Occupy Position' data structure

Type Variable Name Remark
unsigned char NumPoints BatÜePosition
tf_point * PointAddr
unsigned char NumPoints EngagementArea
tf point * PointAddr
tf location * LeftTRP
tf location * RightTRP
float Speed
tf location * TriggerLine
unsigned char TriggerCriteria
unsigned char TriggerUnitSize
unsigned char NumPoints SecondaryBattlePosition
tf_point * PointAddr
unsigned char NumPoints SecondaryEnggArea
tf point * PointAddr
tf location * SecondaryLeftTRP
tf location * SecondaryRightTRP

B-3

B.2.7 Assault

Table B.5 Task 'Assault' data structure

Type Variable Name Remark
unsigned char NumObjectives Objectives
tf point * ObjectivesAddr
unsigned char NumPoints Route
tf point * PointAddr
float Speed
float DismountedSpeed
float StoppingAssaultCriteria
unsigned char SecureObjective Enumeration Type
unsigned char Formation Enumeration Type
unsigned char Spacing Enumeration Type
float UserSpecifiedSpacing
float IFVOffsetX
float IFVOffsetY

B.2.8 Traveling Overwatch

Table B.6 Task 'Traveling Overwatch' data structure

Type Variable Name Remark
unsigned char NumPoints Route
tf point * PointAddr
float RateOfMarch
float CatchUpSpeed
float SupportGroupFollowingDistance
unsigned char Formation Enumeration Type
unsigned char Spacing Enumeration Type
float UserSpecifiedSpacing
unsigned char ConformToTerrain boolean

B.2.9 Overwatch Movement

Table B.7 Task 'Overwatch Movement' data structure

Type Variable Name Remark
unsigned char NumPoints Route
tf point * PointAddr
unsigned char UseConcealedRoute boolean
unsigned char NumPoints LeftBoundary
tf point * PointAddr
unsigned char NumPoints RightBoundary
tf point * PointAddr
unsigned char Movement Enumeration Type
float RateOfMarch

B-4

float CatchUpSpeed
float
unsigned int
unsigned int
float
unsigned char
float
unsigned char
unsigned char
float
float

DismountedSpeed
FollowingLeader
FollowingLeaderDegree
FollowingLeaderDistance
Spacing
UserSpecifiedSpacing
Formation
DIFormation
IFVOffsetX
EFVOffsetY

Enumeration Type

Enumeration Type

B.2.10 Withdraw

B.2.11 Breach

Table B.8 Task 'Withdraw' data structure

Type Variable Name Remark
unsigned char NumPoints Route
tf point * PointAddr
unsigned char Smoke Enumeration Type
float Speed
float SpeedLimit

Table B.9 Task 'Breach' data structure

Type Variable Name Remark
unsigned char NumPoints Route
tf point * PointAddr
unsigned char CreateMarkers boolean
float MaxDistBtwMarks
float BreachLaneWidth

B.2.12 Attack By Fire

same as Task "Hasty Occupy Position".

B-5

B.2.13 Concealment

B.2.14 Delay

Table B.10 Task 'Concealment' data structure

Type Variable Name Remark
unsigned char NumPoints Route
tf point * PointAddr
float Distance
float RateOfMarch
float FrontWidth
unsigned int ForwardSpread
unsigned int BackwardSpread

Table B.l 1 Task 'Delay' data structure

Type Variable Name Remark
unsigned char NumPoints BattlePositionl
tf point * PointAddr
unsigned char NumPoints BattlePosition2
tf point * PointAddr
unsigned char NumPoints BattlePosition3
tf point * PointAddr
unsigned char NumPoints BattlePosition4
tf point * PointAddr
float Speed

B.2.15 Repair

Table B.12 Task 'Repair' data structure

Type Variable Name Remark
tf location * UMCPSite
unsigned char TowVehicle
unsigned char VehicleToRepair

B.2.16 Sevice Station

Table B.13 Task 'Service Station' data structure

Type Variable Name Remark
unsigned char SupplyUnit

B-6

B.2.17 Cross-leveling

Table B.14 Task 'Cross Leveling' data structure

Type Variable Name Remark
tf location * CrossLevelingAreaLocation
float CrossLevelingAreaRadius
unsigned char SupplyToCrossLevel Enumeration Type

B.2.18 Change Formation

Table B.15 Task 'Change Formation' data structure

Type Variable Name Remark
tf location * Destination
unsigned char Formation Enumeration Type
unsigned int FormationAngle

B.2.19 Rendezvous

Table B.16 Task 'Rendezvous' data structure

Type Variable Name Remark
unsigned char Partner
tf location * Objective
unsigned char PUnitFormation Enumeration Type
unsigned char SUnitFormation Enumeration Type
unsigned int RelativePosition
float ParkingOffset
float MaxSpeed

B.2.20 FWA Sweep

Table B. 17 Task 'FWA Sweep' data structure

Type Variable Name Remark
unsigned char NumPoints Route
tf point * PointAddr
float Speed
float Altitude
unsigned char RadarSearchMode Enumeration Type
unsigned char RadarVolumeAzimuth Enumeration Type
unsigned char RadarVolumeElevation Enumeration Type
unsigned char RadarVolumeRange Enumeration Type

B-7

unsigned char RadarVcSetting Enumeration Type
unsigned char RadarOrientationType Enumeration Type
tf location * RadarOrientationLocation
unsigned int RadarOrientationAzimuth
unsigned int RadarOrientationElevation

B.2.21 FWACAP

Table B.18 Task 'FWA CAP' data structure

Type Variable Name Remark
tf location * CAPPosition
unsigned int CAPOrientation
float LenghOfLegs
float InboundLegSpeed
float OutboundLegSpeed
float CAPAltitude
unsigned char RadarSearchMode Enumeration Type
unsigned char RadarVolumeAzimuth Enumeration Type
unsigned char RadarVolumeElevation Enumeration Type
unsigned char RadarVolumeRange Enumeration Type
unsigned char RadarVcSetting Enumeration Type
unsigned char RadarOrientationType Enumeration Type
tf location * RadarOrientationLocation
unsigned int RadarOrientationAzimuth

B.2.22 FWA CAS Mission

Table B.19 Task 'FWA CAS Mission' data structure

Type Variable Name Remark
tf location * ForwardAirController
unsigned char NumPoints RouteToForwardAirController
tf point * PointAddr
unsigned char NumPoints OptionalReturnRoute
tf point * PointAddr
float FlightSpeed
float Altitude
unsigned char FlightMethod Enumeration Type
unsigned char Formation Enumeration Type
unsigned int TimeOnStation
unsigned char ActionsAfterMission Enumeration Type

B-8

B.2.23 FWA Ingress

Table B.20 Task 'FWA Ingress' data structure

Type Variable Name Remark
unsigned char NumPoints Route
tf point * PointAddr
float Speed
float Altitude
unsigned char Formation Enumeration Type
unsigned char MovementType Enumeration Type
unsigned char AtEndOfRoute Enumeration Type

B.2.24 FWA Attack Ground Target

Table B.21 Task 'FWA Attack Ground Target' data structure

Type Variable Name Remark
unsigned char NumTargets
tf point * TargetAddr
unsigned char NumPoints Route
tf point * PointAddr
float Speed
float Altitude
unsigned char MovementType Enumeration Type
unsigned char Formation Enumeration Type
unsigned char AttackGeometry Enumeration Type
unsigned char AttackEntry Enumeration Type
unsigned char AttackDelivery Enumeration Type
weaponsenabled * WeaponEnabledAddr structure pointer
unsigned char MissionType Enumeration Type

Table B.22 Task 'weaponsenabled' data structure

Type Variable Name Remark
unsigned char Bombs boolean
unsigned char Guns boolean
unsigned char Missiles boolean

B.2.25 FWA Egress

same as Task "FWA Ingress'

B-9

B.2.26 FWA Return to Base

Table B.23 Task 'FWA Return to Base' data structure

Type Variable Name Remark
unsigned char NumPoints Route
tf point * PointAddr
unsigned char NumPoints Optional Return Route
tf point * PointAddr
tf location * TargetLocation
unsigned char FlightMethod Enumeration Type
float FlightSpeed
float Altitude
unsigned char Formation Enumeration Type
unsigned char MissionType Enumeration Type
unsigned char ActionAfterMission Enumeration Type

B.2.27 FWA Interdiction

Table B.24 Task 'FWA Interdiction' data structure

Type Variable Name Remark
unsigned char NumPoints RouteToTarget
tf point * PointAddr
unsigned char NumPoints OptionalReturnRoute
tf point * PointAddr
tf location * TargetLocation
unsigned char FlightMethod Enumeration Type
float FlightSpeed
float Altitude
unsigned char Formation Enumeration Type
unsigned char MissionType Enumeration Type
unsigned char ActionAfterMission Enumeration Type

B.2.28 RWA Fly Route

Table B.25 Task 'RWA Fly Route' data structure

Type Variable Name Remark
unsigned char NumPoints Route
tf point * PointAddr
float Speed
float CatchUpSpeed
float Altitude
unsigned char Formation Enumeration Type
unsigned char Spacing Enumeration Type
float UserDefinedSpacing
unsigned char MovementType Enumeration Type

B-10

unsigned char TargetFacingMode boolean
tf location * NapQfEarthTRP

B.2.29 RWA Hover

Table B.26 Task 'RWA Hover' data structure

Type Variable Name Remark
tf location * FARPPoint
float Speed
float Altitude
unsigned char ActiveFuelFARP boolean
unsigned char ActiveAmmoFARP boolean

B.2.30 RWA Orbit

Table B.27 Task 'RWA Orbit' data structure

Type Variable Name Remark
tf location * CenterPoint
float Radius
float Speed
float Altitude

B.2.31 RWA Assemble

same as Task "RWA Orbit"

B.2.32 RWA Attack

Table B.28 Task 'RWA Attack' data structure

Type Variable Name Remark
tf location * Objective
float Speed
unsigned char AttackType Enumeration Type

B.2.33 RWA Hasty Occupy Position

Table B.29 Task 'RWA Hasty Occupy Position' data structure

Type Variable Name Remark
unsigned char NumPoints BattlePosition
tf point * PointAddr
tf location * LeftTRP

B-ll

tf location * RightTRP
tf location * EnggAreaTRP
unsigned char TargetFacingMode boolean
float Speed
float Altitude
float AltitudeAtEnt

B.3 Enumeration Type for Variables in Task

Task Kind Variable Names Field Value

Assault

Breach

Change Formation

Cross-leveling

Follow Simulator

Secure Objective
Formation

*: default value

Spacing

Create Markers

Formation

0:No l:Yes*
0 : Other
1 : Column
2 : Staggered-Column
3 : Echelon-Right
4 : Echelon-Left
5 : Line*
6: Wedge
7:Vee
0 : Other
1: Closed*
2: Open
3 : User Specifed

0 : Other
1 : Breach Lanes*
2 : No Markers

Same as 'Assault'- 'Formation' *Wedge

Supply to Cross-level

Travel Type

Formation
Spacing

FWA Attack Ground Tgt Movement Type

Formation

0: Other
1 : Most unbalanced non-fuel munition*
2 : Fuel

0: Other
1 : Road March
2 : Cross Country*

Same as 'Assault'- 'Formation' * Wedge
Same as 'Assault'- 'Spacing' *Closed

0: Other
1 : Low Level
2 : Contour*
0: Other
1 : Fighting Wing*
2 : Line Abreast
3 : Bearing

B-12

4: Trail
5: VIC
6 :Box
7: Offset Box

Attack-Geometry 0: Other
1: Direct*
2: Split
3 :90-10
4: Trail

Attack-Entry 0: Other
1: Pop-Up
2 : Level*
3 : Standoff AGM Pop-Up
4 : Standoff AGM Med Alt Dive

Attack-Delivery 0: Other
1 : Laydown
2 : Low Altitude Dive*
3 : Medium Altitude Dive
4: Strafe

Weapons Enable
Bombs: 0:No l:Yes*
Guns: 0:No l:Yes*
Missiles: 0:No l:Yes*

Mission Type 0: Other
1: Targets are vehicles*
2 : Target is a location

FWACAP Radar Search Mode 0: Other
1 : Track While Scan(Manual)*
2 : Track While Scan(Auto)

Radar Volumn Azimuth 0: Other
1 : +/-10 Degrees
2 : +/- 20 Degrees
3 : +/- 40 Degrees*
4 : +/- 60 Degrees

Radar Volumn Elevation 0: Other
l:8Bar
2:4Bar
3 :2 Bar*
4: IBar

Radar Volumn Range 0: Other
1:20NM
2:50NM
3 : 100 NM*
4 : 200 NM

Radar Vc Setting 0: Other
1 : +/-1600 knots*
2 : 0-1600 knots
3 : 0-(-1600) knots

Radar Orientation Type 0: Other
1 : Use Orientation Az/El *
2 : Use Orientation Location

B-13

FWACAS FlightMethod Same as 'FWA AGT'- 'Movement Type' *Contour
Formation Same as 'FWA AGT'- 'Formation' *Fighting Wing
At End of Route 0 : Other

1: Orbit*
2: Land

FWA Sweep Radar Search Mode
Radar Volumn Azimuth
Radar Volumn Elevation
Radar Volumn Range
Radar Vc Setting
Radar Orientation Type

Same as FWA CAP'
Same as FWA CAP'
Same as 'FWA CAP'
Same as 'FWA CAP'
Same as FWA CAP'
Same as 'FWA CAP'

FWA Ingress Formation Same as FWA AGT'- 'Formation' *Fighting Wing
Movement Type Same as 'FWA AGT'- 'Movement Type' *Contour
At End of Route 0 : Other

1 : Orbit*
2: Land

FWA Interdiction
♦Contour

FlightMethod Same as FWA AGT'- 'Movement Type'

Formation Same as FWA AGT'- Formation' *Fighting Wing
Mission Type Same as 'FWA AGT'- 'Mission Type' * Attack fixed

emplacement
ActionsAfterMission 0 : Other

1: Orbit*
2 :Land

Occupy Position

Travel

Use Alternative Position
Trigger Criterion

Trigger Unit Size

Travel Type
Formation
Spacing

0:No l:Yes*
0: Other
1 : First Vehicle*
2 : Last Vehicle
3 : Unit Center of Mass
0: Other
1 : Vehicle
2 : Squad
3 : Section
4 : Platoon *
5 : Company
6 : Battallion
7 : Regiment
8: Brigade
9 : Division
10 : Corps
11 : Army
12 : Army Group

Same as Follow Simulator'
Same as 'Assault'
Same as 'Assault'

B-14

Overwatch Move Use Concealed Routes
Movement

Randezvous

Spacing
Formation

DI Formation

PUnitFormation

SUnitFormation

0:No l:Yes*
0: Other
1: Boundary Overwatch*
2 : Non-Boundary Overwatch
3 : Boundary(No Overwatch)

Same as 'Assault'
0: Other
1 : Line*
2 : Column
0: Other
1 : Rudel*
2 : Reihe

0: Other
1 : Wedge
2 : Line
3:Vee
4 : Column
5 : Staggered-Column*
6 ; Echelon-Right
7 : Echelon-Left
0: Other
1 : Wedge
2 : Line
3:Vee
4: Column
5 : Staggered-Column*
6: Echelon-Right
7: Echelon-Left

RWA Attack

RWA Fly Route

Attack Type

Fomation

Spacing
Movement Type

0: Other
1 : Hover Attack*
2 : Running Attack

0: Other
1 : Wedge*
2: Line
3 : Echelon Right
4 : Echelon Left
5: Trail
6 : Straggered Right
7 : Straggered Left
8 : Pair in trail

Same as 'Assault'
0: Other
1 : Nap of Earth
2 : Contour*
3 : Low Level
0:No* l:Yes Target Facing Mode

RWA Occupy Position Target Facing Mode 0:No* 1:Yes

RWA Unit FARP Active Fuel FARP 0 : Other

B-15

1 : Disable Reaction
2 : Enable Reaction*

Active Ammo FARP 0 : Other
1 : Disable Reaction
2: Enable Reaction*

Traveling Overwatch Formation Same as'Assault'
Spacing Same as'Assault'
Conform to Terrain 0:No* 1:Yes

Withdraw Smoke 0: Other
1 : Enabled
2 : Disabled*

B-16

Appendix C. Command Line Interface for SFT

NAME
SFT - Scenario File Translator

SYNOPSIS
SFT [-help] [-N|n] [-C|c] [options]

DESCRIPTION
SFT converts a scenario to another type of scenario. A
scenario file that will be translated to another format
is called 'source scenario', and a scenario file which
is produced by SFT is 'target scenario'.

A 'source simulation' is a computer simulation name
which operates a source scenario, a 'target simulation'
is a name of computer simulation which the target
scenario will be run.

OPTIONS
The following options are supported:

-help
Show the usage message.

-N|n
Show the corresponding numbers of each simulation

-C|c
SFT interactive with the user. SFT asks a source
simulation type, a source scenario file name, a
target simulation type and a target scenario file
name.

-s [number] [input]
Name the source simulation name number and source
scenario file, 'input' should have a correct
directory path and file name.

-t [number] [output]
Name the target simulation name number and target
scenario file, 'output' should have a correct
directory path and file name.

OTHER NECESSARY INPUT
When converting a source scenario to ModSAF scenario,
Exercise ID and terrain file path/name are needed.

Converting to EADSIM scenario file, laydown file name
without suffix (.lay) is necessary.

C-l

If a source simulation is BATTLESIM, there can be
several input files to build a scenario. Be sure all
input files are ended with series of number from 0.
In that case, input file to SFT is the first file
name and the number of files is needed to convert to
a target scenario.

EXAMPLES
SFT -s 1 ./data/sen.1 -t 2 ./data/sen.2

Convert a source scenario scn.l of corresponding
source simulation, which is located in ./data to a
target scenario sen.2 of simulation number 2 into
./data directory.

AUTHOR

Captain Heon-Gyu Park, Republic of Korea, Army.

C-2

Biblioeravhv

[Adam93] Adams, C. "DOD Embraces Warfighting Simulation," Federal Computer Week. 7:8-10
(November 1993).

[ADST95] Advanced Distributed Simulation Technology, USER'S MANUAL for ModSAF.
Contract N61339-91-D-0001. 28 April 1995.

[Army94] Secretary of Army, Army Model and Simulation Master Plan. 3 May 1994.

[Bone90] Boner, K.E., D.R. Hardy and T.R. Tiernan. "Battle Force Inport/Simulation
Networking: SIMNET Protocol Suitability Consideration." Technical Note 1614. Naval
Ocean Systems Center, San Diego CA. June 1990.

[Cour95] Courtemanche, Anthony J., Andy Ceranowicz. "ModSAF Development Status."
Proceedings of the Fifth Conference on Computer Generated Forces and Behavioral
Representation. Institute for Simulation & Training, May 1995.

[Cera95] Ceranowicz, Andy. Modular Semi-Automated Forces. Loral Advanced Distributed
Simulation, Cambridge, MA, 1995.

[DIS94] DIS Steering Committee. The PIS Vision: A Map to the Future of Distributed
Simulation. Version 1, May 1994.

[Dod95] Secretary of Defense for Acquisition and Technology, Modeling and Simulation flVl&S)
Master Plan. Department of Defense, October 1995.

[Fuji93] Fujimoto, Richard M. "Parallel Discrete Event Simulation: Will the Field Survive,"
ORSA Journal on Computing. Summer 1993.

[Gard93] Gardner, Michael T. A Distributed Interactive Simulation Based Remote Debriefing
Tool for Red Flag Missions. MS thesis, AFIT/GCS/ENG/93-09, School of Engineering,
Air Force Institute of Technology(AU), Wright-Patterson Air Force Base OH, December
1993.

[Garr95] Garrett, Randy. "A New Simulation Paradigm: Advanced Distributed Simulation,"
PHALANX. 25-27 September 1995

[Harv91] Harvey, Edward P. and Richard L. Schaffer. "The Capability of the Distributed
Interactive Simulation Networking Standard to Support High Fidelity Aircraft
Simulation." Proceedings of the 13th Interservice/Industrv Training Systems Conference
263-271, 1991.

[Hill94] Hiller, James B. Analytic Performance Models Of Parallel Battlefield Simulation Using
Conservative Processor Synchronization. MS thesis, AFIT/GCS/ENG/94D-08, School of
Engineering, Air Force Institute of Technology(AU), Wright-Patterson Air Force Base
OH, December 1994.

BIB-1

[IST93] Institute for Simulation and Training, Standard for Information Techmology - Protocols
for Distributed Interactive Simulation Application. Version 2.0 Third draft. Technical
Report IST-CR-93-15, University of Florida, May 1993.

[IST94] Institute for Simulation and Training, Standard for Distributed Interactive Simulation -
Application Protocols. Version 2.0 Fourth draft. Technical Report IST-CR-93-40,
University of Florida, March 1994.

[Jone96] Jones, Anita K. "ADS for Analysis - Challenges for the Future," PHALANX. June
1996.

[McDo91] McDonald, L. Bruce, et al. "Standard Protocol Data Units for Entity Information and
Interaction in a Distributed Interactive Simulation." Proceedings of the 13th Interservice /
Industry Training Systems Conference. 119-126, 1991.

[Mill89] Miller, Harold G. "Wargaming Networks for Training." Proceedings Interactive
Networked Simulation for Taming. 44, 1989.

[Neel87] Neelamkavil, Francis. "Computer Simulation and Modelling." John wilev & sons. 1987.

[Pick95] Pickett, H. Kent, Mikel D. Petty. "Report on The Stat of Computer Generated Forces
1994." Proceedings of the Fifth Conference on Computer Generated Forces and Behavioral
Representation. Institute for Simulation & Training, May 1995.

[Pope91] Pope, Arthur R. "The SIMNET Network and Protocols." Bolt Beranek and Newman
Ina Report Number 7627 prepared for Defense Advanced Research Projects Agency June
1991.

[Shea92] Sheasby, Steven M. Management of SIMNET and PIS Entities in Synthetic
Environments. MS thesis, AFIT/GCS/ENG/92D-16, School of Engineering, Air Force
Institute of Technology(AU), Wright-Patterson Air Force Base OH, December 1992.

[Siko95] Sikora, Jim and Phil Coose. "What in the World is ADS?" PHALANX. 1, 6-8 June
1995

[Stev90] Stevens, W. Richard. Unix Network Programming. Englewood Cliffs, New Jersey:
Prentice Hall, 1990.

[TBE95] Teledyne Brown Engineering, USER'S MANUAL for EADSIM. 26 November 1995.

[Thor88] Thorpe, Jack A. "Warfighting with SIMNET-A Report from the Front." Proceedings of
the 10th Interservice/Industrv Training Systems Conference. 127-135, 1988.

[Webs94] Merriam Webster's Collegiate Dictionary - 10th Edition. Merriam-Webster,
Incorporated, Messachusetts, 1994

BIB-2

Vita

Captain Heon-Gyu Park was bom on April 7, 1966, in YaeGwan, GyungSangBukDo,

Republic of Korea. He graduated from the Korea Military Academy with a Bachelor of Science

degree in Computer Engineering in March 1988. After receiving his commission as an Army

Infantry officer, he was a platoon leader at GOP (Guard of Post) near PanMunJom from 1988

through 1989. His next assignment was a leader officer of a guard of honor in the Third Army

Headquarters. In 1991, after completing the Officer Basic Course (OBC) of Computer

Engineering, he was assigned to the 1st Anti-Air Brigade as a Computer Engineer. There he led a

team of computer software engineers and was responsible for maintaining all systems and the

network. He remained in that position until May of 1994 when he was selected to attend the Air

Force Institute of Technology at Wright-Patterson Air Force Base, Dayton Ohio to study for his

Master of Science degree in Electrical and Computer Engineering. After completing his Masters

degree, he will be assigned to the Headquarters of Army, Republic of Korea.

Permanent Address:
33/4 316-115 JeonPolDong
Pusan City, Republic of Korea
614-041

Tel:
Int'l: 82-51-809-9772
Korea: 051-809-9772

Vita-1

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average l hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

December 1996
3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE

THE DEVELOPMENT OF A SCENARIO TRANSLATOR FOR DISTRIBUTED
SIMULATIONS

6. AUTHOR(S)

Heon-Gyu Park

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology, WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/96D-22

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Distribution Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

There exists a variety of simulation generation and analysis products which have differing purposes and functions
designed to simulate a real military battlefield. Due to the particular purpose of each simulation, it is impractical to use
one scenario of a simulation directly with another simulation without a translator since there is no standard scenario
format. In the current environment, interoperability between simulations is becoming more important in large scale
simulations and distributed exercises. The Scenario File Translator (SFT) provides an easy and accurate way to create a
scenario from a heterogeneous simulation. The SFT can load and save the three research simulations: ModSAF.
EADSIM, and BATTLESIM. It also defines the general transitional prototype (TP) which is the information most
commonly used to create a mock battlefield computer simulation. Every source scenario is converted through TP for
program extensibility and reusability. System functionality is accessible through a graphical user interface (GUI).
Although this system was designed for three simulations, it can be applied to any other simulations by creating only two
additional functions: one which maps the new scenario to the TP and another which remaps the TP into the transitional
scenario protocol.

14. SUBJECT TERMS

Scenario, Simulation, Translation, Conversion, DIS, Distributed Interactive Simulation,
CGF, Computer Generated Forces, Mission Analysis

15. NUMBER OF PAGES
140

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev.

Prescribed by ANSI Std. Z39-18
298-102

2-89)

